
On the unity of duality

Noam Zeilberger

August 6, 2008

Abstract

Most type systems are agnostic regarding the evaluation strategy for the underlying languages, with
the value restriction for ML which is absent in Haskell as a notable exception. As type systems become
more precise, however, detailed properties of the operational semantics may become visible because
properties captured by the types may be sound under one strategy but not the other. For example,
intersection types distinguish between call-by-name and call-by-value functions, because the subtyping
law (A→ B) ∩ (A→ C) ≤ A→ (B ∩ C) is unsound for the latter in the presence of effects.

In this paper we develop a proof-theoretic framework for analyzing the interaction of types with
evaluation order, based on the notion of polarity. Polarity was discovered through linear logic, but we
propose a fresh origin in Dummett’s program of justifying the logical laws through alternative verifica-
tionist or pragmatist “meaning-theories”, which include a bias towards either introduction or elimination
rules. We revisit Dummett’s analysis using the tools of Martin-Löf’s judgmental method, and then show
how to extend it to a unified polarized logic, with Girard’s “shift” connectives acting as intermediaries.
This logic safely combines intuitionistic and dual intuitionistic reasoning principles, while simultaneously
admitting a focusing interpretation for the classical sequent calculus.

Then, by applying the Curry-Howard isomorphism to polarized logic, we obtain a single programming
language in which evaluation order is reflected at the level of types. Different logical notions correspond
directly to natural programming constructs, such as pattern-matching, explicit substitutions, values and
call-by-value continuations. We give examples demonstrating the expressiveness of the language and
type system, and prove a basic but modular type safety result. We conclude with a brief discussion of
extensions to the language with additional effects and types, and sketch the sort of explanation this can
provide for operationally-sensitive typing phenomena.

1 Introduction

An essay by John Reynolds centers on the dangers of specifying the semantics of a language by means of a
definitional interpreter, when the meaning of the defining language is itself potentially unclear (Reynolds,
1972). In a functional programming language, the result of function application can depend on whether
evaluation order is call-by-value or call-by-name (due to the presence of non-termination and other side-
effects), and Reynolds observes that a direct style interpreter leaves this choice only implicit in the evaluation
order of the defining language—thus carrying little explanatory power, particularly in the case of a “meta-
circular interpreter” (a Lisp interpreter written in Lisp, for example). He then goes on to give a careful
account of how to make evaluation order explicit by writing the interpreter in continuation-passing style.

Yet a language definition includes not only the dynamic semantics of expressions, but also their static
syntax. Does the lesson of Reynolds’ essay extend “all the way down”? For example, should evaluation
order be explicit at the level of types? The reason one might at first doubt this possibility is that, for the
most part, we have been getting along fine using very similar type systems for functional languages (such as
ML and Haskell) with very different evaluation strategies. And for good reason: the theoretical foundation
of all these languages is the Curry-Howard correspondence with intuitionistic natural deduction, i.e., the
simply-typed lambda calculus. And the lambda-calculus can be given many different evaluation strategies.

Yet, one notable crack in this foundation is the so-called value restriction on polymorphism, or second-
order quantification. The original implementation of ML was unsound due to the interaction of poly-

1

morphism with effects such as mutable storage and callcc (Harper and Lillibridge, 1991), and prompted
various workarounds, with the eventual adoption of a non-logical, syntactic restriction on polymorphism-
introduction (Wright, 1995; Milner et al., 1997). It might be easy to dismiss this as an anomaly, but
recent studies of intersection and union types in operational settings (Pfenning and Davies, 2001; Dun-
field and Pfenning, 2004) have suggested a wider pattern of operationally-sensitive typing phenomena. The
usual intersection introduction rule, for instance, is unsound in effectful call-by-value languages (requiring a
value restriction), as is the standard law of subtyping (A→ B) ∩ (A→ C) ≤ A→ (B ∩ C). While these are
sound under call-by-name evaluation (even in the presence of effects), there, unions pose similar problems,
e.g., (A→ C) ∩ (B → C) ≤ (A ∪B) → C becomes unsound.

In short, at a sufficient level of granularity it becomes clear that type systems must reflect their underlying
language’s evaluation order. But does this destroy the logical interpretation of programming languages? We
propose otherwise: one can recover evaluation order as a logical notion by first refining the logical foundation.
In this paper, we will explain how evaluation order can be described in terms of focusing and polarity, proof-
theoretic innovations introduced within the setting of linear logic by Andreoli (1992) and Girard (1993), and
later extensively developed by Girard (2001) and Laurent (2002). Rather than starting directly with the
technical machinery of linear logic, however, we will attempt to give a rational reconstruction of polarity
and focusing by going back to Michael Dummett’s examination, in the 1976 William James Lectures, of the
justification of the logical laws.

Briefly, Dummett suggested that the logical laws could be justified by alternative proof-theoretic “meaning-
theories”, which employ opposite biases towards either the introduction or the elimination rules of natural
deduction. In one approach, which Dummett calls verificationist, it is assumed that any provable propo-
sition has a direct proof (i.e., ending in a sequence of introduction rules)—this assumption can be used to
justify any other potential law (e.g., an elimination rule). But alternatively, one can assume that any valid
consequence of a proposition can be found directly (i.e., beginning with a sequence of elimination rules), and
use this to justify other potential laws. Dummett calls this dual approach a pragmatist meaning-theory. How
can these two alternatives be related?

Our answer, which goes beyond Dummett’s requirement of harmony, combines insights from Martin-
Löf’s judgmental method (Martin-Löf, 1996; Pfenning and Davies, 2001) and Laurent’s polarized linear
logic. First, we identify the different tools of Dummett’s analysis as different judgments about propositions.
By concentrating on proofs and refutations (rather than arbitrary consequences), we can highlight the
symmetries between these judgments as a sort of “square of opposition”:

direct proof of A justified refutation of A

justified proof of A direct refutation of A

The top half of the square corresponds to the verificationist meaning-theory, the bottom half to the pragma-
tist. But we can go further: these two sets of judgments are actually about different kinds of propositions!
Direct proof and justified refutation are about positive propositions. Direct refutation and justified proof are
about negative propositions. In other words—which is the lesson we learn from linear logic—the verifica-
tionist and pragmatist approaches define distinct, oppositely polarized connectives. What this means is that
rather than considering the two approaches only in isolation, we can treat them as interacting fragments of
a unified, polarized logic. Indeed, not only can we ascribe the usual operation of negation to the horizontal
arrows,1 but we can go further and find connectives completing the square. The diagonal arrows correspond

1To be precise, these are actually two different, oppositely polarized negations.

2

to the dualizing operation (−)⊥ familiar from linear logic, while the vertical arrows correspond to the more
recently-discovered “shift” connectives (Girard, 2001).

The title of this paper is a pun on Girard’s “unity of logic” (Girard, 1993), and a series of papers by
different authors, all suggesting a duality between call-by-value and call-by-name languages (Filinski, 1989;
Curien and Herbelin, 2000; Selinger, 2001; Wadler, 2003). By giving this polarized logic a Curry-Howard
interpretation, we construct a single programming language in which evaluation order is explicitly reflected
at the level of types, and call-by-value and call-by-name evaluation freely interact. The different judgments
of the square correspond to different syntactic categories, some quite familiar from the theory and practice
of programming languages. For example, direct proofs correspond precisely to values in the ordinary sense
of ML, and justified refutations to call-by-value continuations defined by pattern-matching. This framework,
we propose, is well-suited for studying computational behavior from a logical perspective.

2 The logic of proofs and refutations

2.1 The meaning(s) of the connectives

In the 1976 William James Lectures, Michael Dummett considered the possibility of justifying the logical laws
(Dummett, 1991). Arguing against the formalist position that the laws need no justification, and likewise
against the holistic position that they can only be considered in toto, Dummett proposed that the logical
laws could be justified through an analysis of the “meaning” of the connectives. Moreover, that this analysis
could be purely proof-theoretic—or to put it glibly, Dummett expanded upon Wittgenstein’s “meaning is
use”, describing how to read the meanings of the logical connectives in the logical laws themselves.

But which laws determine the meanings of the connectives? Dummett gives two alternative interpreta-
tions, which he calls verificationist and pragmatist meaning-theories. The first is more familiar, going back to
an offhand remark by Gentzen (while speaking about his system of natural deduction) that “an introduction
rule gives, so to say, a definition of the constant in question” (Gentzen, 1935, p. 80). Gentzen’s remark was
first developed mathematically by Prawitz (1974), by treating the meaning of a proposition as given by its
canonical proofs, or verifications.2 Under what Dummett calls the “Fundamental Assumption”—if a proposi-
tion is true then it must have a canonical proof—one obtains an upwards justification procedure for arbitrary
logical laws: an inference rule is justified if any canonical proofs of its premises can be transformed into
a canonical proof of its conclusion. The difference between Prawitz’s original formulation and Dummett’s
generalization is mostly in the definition of “canonical”, and the corresponding scope of the justification
procedure. Prawitz defined canonical proofs as ending in an introduction rule, and used this to justify the
standard elimination rules. For example, consider the standard set of rules for conjunction in intuitionistic
natural deduction:

A B
A ∧B

A ∧B
A

A ∧B
B

By (Prawitz’s) definition, a canonical proof of A∧B must end in the conjunction rule applied to derivations
D1 and D2 of A and B, respectively. This definition can be applied as an inversion principle to justify both
elimination rules: any canonical proof of their (common) premise A ∧B must have embedded proofs D1 of
A and D2 of B, which can be used directly to derive the two rules’ respective conclusions. Visualize this as
a pair of reductions, showing how to eliminate either elimination rule when applied to a canonical proof:

D1

A
D2

B
A ∧B
A

D1

A

D1

A
D2

B
A ∧B
B

D2

B

2Without a direct connection to Gentzen’s work, though, this idea was already explored by various people in the 30s,
particularly Wittgenstein (“It is what is regarded as the justification of an assertion that constitutes the sense of the assertion”
(Wittgenstein, 1974, I,§40)), and Brouwer-Heyting-Kolmogorov in their interpretations of intuitionistic logic (Heyting, 1974;
Kolmogorov, 1932).

3

Dummett extended this sort of justification to arbitrary logical laws—not just the standard elimination
rules—by defining canonical proof as a hereditary notion. Canonical proofs now end in a sequence of intro-
duction rules, which we recall for reference:

A B
A ∧B T

A
A ∨B

B
A ∨B (no rule for F)

[A]
...
B

A ⊃ B

Thus a canonical proof of A ∧B is defined as the conjunction rule applied to canonical proofs of A and B,
while a canonical proof of A ∨B is the appropriate injection applied to a canonical proof of A or B. There
is one canonical proof of T, and no canonical proof of F. However, implication represents a base case: a
canonical proof of A ⊃ B is simply one ending in the introduction rule, the premise of which requires we
show how to derive B from the assumption A by some means. That is, the derivation of B need not be
canonical (consider that at some point we may want to apply an elimination rule on A). Atomic propositions
represent another base case: the only way to prove X canonically is from an initial premise X .

Let us see how this stronger notion of canonical proof can be used to justify more complex inference
rules. Consider the following “multi-step” elimination:

A ∧ (B1 ∨B2)

[A][B1]
...
C

[A][B2]
...
C

C

By Dummett’s inversion principle, a canonical proof of the first premise contains a canonical proof D of A,
together with a canonical proof Ei of Bi, for one of i = 1 or 2. Substituting D for hypothesis [A] and Ei for
[Bi] in the (i+ 1)th premise of the rule, we obtain a derivation of C directly.

The verificationist meaning-theory and the upwards justification procedure are a way of vindicating
Gentzen’s conceptual prioritization of the logical rules. But Dummett argues that the notion that the
introduction rules determine the meanings of the connectives “has no more force than the converse suggestion,
that they are fixed by the elimination rules”, going on to write, “The underlying idea is that the content of
a statement is what you can do with it if you accept it.... This is, of course, the guiding idea of a pragmatist
meaning-theory” [p. 280].3

If the elimination rules are taken as primitive, then any other inference rule may be justified by a dual,
“downwards justification procedure”: a rule is valid if any canonically-obtained consequence of its conclusion
can be transformed into a canonically-obtained consequence of its premises. The notion of canonically-
obtained consequence is defined analogously to canonical proof, but is somewhat complicated by the case of
disjunction in natural deduction. So let us consider only the elimination rules for conjunction, truth, and
implication:

A ∧B
A

A ∧B
B (no rule for T)

A ⊃ B A
B

A canonical consequence of A∧B applies one of the projection rules and then derives a canonical consequence
from A or B; there are no canonical consequences of T; and a canonical consequence of A ⊃ B applies modus
ponens with any (not necessarily canonical) proof of A, then derives a canonical consequence from B. Again,
we can validate the standard set of rules for conjunction—but this time justifying the introduction rule using
the elimination rules—via the following reductions:

3Dummett attributes this idea to Martin-Löf, who he says “constructed an entire meaning-theory for the language of
mathematics on the basis of the assumption that it is the elimination rules that determine meaning.” This is likely a reference
to Martin-Löf’s work with Peter Hancock (Hancock and Martin-Löf, 1975), about which Martin-Löf wrote to Dummett shortly
before the William James Lectures (Martin-Löf, 1976). In proof-theoretic terms, though, their realization of a pragmatist
meaning-theory is different from Dummett’s, since they still rely on a notion of canonical proof, albeit not granting it definitional
status. Martin-Löf’s 1983 Siena Lectures explicitly adopt a verificationist meaning-theory: “The meaning of a proposition is
determined by... what counts as a verification of it” (Lecture 3)

4

A B
A ∧B
A
D1

A
D1

A B
A ∧B
B
D2

B
D2

In words, any canonical consequence of (the introduction rule’s conclusion) A ∧ B contains a canonical
consequence D1 of A or a canonical consequence D2 of B, and in either case we can obtain the consequence
directly (from one of the introduction rule’s premises). Again, we can also use this hereditary notion of
canonical consequence to justify more complex logical laws, such as a multi-step introduction rule:

[A]
...
B1

[A]
...
B2

A ⊃ (B1 ∧B2)

Any canonical consequence of the conclusion applies modus ponens with a proof of A, then projects B1 or
B2 and derives a canonical consequence. In either case, we can substitute the proof of A into one of the the
rule’s premises, and then derive the consequence directly.

How can these two, equally legitimate ways of understanding the connectives be related? Dummett
first considers demanding “harmony between the two aspects of linguistic practice”, which amounts to
requiring that an accepted set of introduction and elimination rules be sound under both verificationist or
pragmatist meaning-theories. As we saw above (albeit glossing over the case of disjunction), harmony holds
for intuitionistic natural deduction. Technically, harmony is only a “modest demand”, as Dummett puts it,
and in addition we can ask that the rules be complete under either interpretation, a criterion he calls stability.
Yet, without getting into a detailed explanation of stability, we would suggest that there is already something
missing from this approach to reconciling the two meaning-theories. If we take seriously Dummett’s idea
that these are really meaning-theories, i.e., that they are two different ways of assigning meaning to the
connectives, then another way of putting it is that they define different connectives. By coincidence, we
happened to notate these with the same symbols, but we can follow the example of linear logic and write ⊗
for “verificationist conjunction” versus N for “pragmatist conjunction”, and so forth, making it clear that
there are two versions of each connective. Then rather than demanding harmony, we can simply accept
diversity!

Making this politically-correct slogan mathematically-precise will be the aim of the next few sections. To
get the project off the ground we will marry Dummett’s analysis with the judgmental method (Martin-Löf,
1996; Pfenning and Davies, 2001), employing different judgments for the different kinds of proof objects
manipulated above, such as canonical proofs and justified inferences. Moreover, to maintain a perfect du-
ality between verificationist and pragmatist meaning-theories, we will carry out this project for proofs and
refutations, rather than arbitrary inferences. Thus we define certain canonical proofs and the corresponding
refutations they justify, as well as certain canonical refutations and the corresponding proofs (by contradic-
tion) they justify. We will also explain why our adoption of linear logic notation is more than happenstance:
the dichotomy between verificationist and pragmatist meaning-theories is precisely one of polarity. Using
this insight, we will show how to unify the two approaches as fragments of a single, polarized logic, and then
explain the connection between the multi-judgment natural deduction we develop for this logic and focusing
strategies for the classical sequent calculus.

2.2 A judgmental formulation of the verificationist meaning-theory

Above, when we wrote a formula as the conclusion of a rule, we meant that the rule establishes that the
formula is true. For example, the rule:

A B
A ∧B

5

says that if A and B are both true, then A ∧ B is true. But of course the assertion that a formula is true
and the formula itself are different things, and following Martin-Löf we can make this distinction explicit,
e.g., by rewriting the rule as:

A true B true
A ∧B true

Such a step may seem pedantic when the only judgment one ever makes is A true, but for our task of
modelling Dummett’s analysis we will require a much richer judgmental palette.

We will begin by describing a formulation of the verificationist meaning-theory. Before listing its differ-
ent judgments, though, we need to explain what these judgments are about: not arbitrary formulas, but
“formulas through a verificationist lens”, which we say have positive polarity. We adopt the notation ⊗, 1,
⊕, 0, and ¬v for the verificationist interpretations of conjunction, truth, disjunction, falsehood, and nega-
tion,4 respectively. These positive connectives may be combined with positive atoms X,Y to build positive
formulas P,Q:

P,Q ::= X | 1 | P ⊗Q | 0 | P ⊕Q | ¬vP

As we explained, the two central concepts of a verificationist meaning-theory are canonical proof and
“upwards” justified inference. We will shift terminology a bit from Dummett and refer to the former as direct
proofs, writing P triv for the judgment that P has a direct proof (and so is not only true but “trivial”).5

We write P false for the judgment that P is “merely” refutable, i.e., by some justified, but not necessarily
direct, train of reasoning.

Rather than immediately giving proof and refutation rules for each connective, we will first axiomatize
the inversion principles associated with Dummett’s hereditary definition of direct (“canonical”) proof. For
example, we know that any direct proof of X ⊗ (Y ⊕ ¬vQ) has one of the following two forms:

X triv
Y triv

Y ⊕ ¬vQ triv

X ⊗ (Y ⊕ ¬vQ) triv

X triv

Q false

¬vQ triv

Y ⊕ ¬vQ triv

X ⊗ (Y ⊕ ¬vQ) triv

In general, any direct proof of P ends in a series of introduction rules, with a fringe of primitive premises
of the form X triv or Q false. We call such a list of premises ∆ a linear context, and write this relationship
as ∆ ⇒ P triv. As shown above, for P = X ⊗ (Y ⊕ ¬vQ) we have ∆1 ⇒ P triv and ∆2 ⇒ P triv, where
∆1 = (X triv, Y triv) and ∆2 = (X triv, Q false). The intuition is that the set {∆ |∆ ⇒ P triv} represents
all possible decompositions of a direct proof of P , i.e., an inversion principle.

For arbitrary positive formulas, ∆ ⇒ P triv is axiomatized as follows:

X triv ⇒ X triv P false ⇒ ¬vP triv

· ⇒ 1 triv

∆1 ⇒ P triv ∆2 ⇒ Q triv

∆1,∆2 ⇒ P ⊗Q triv

(no rule for 0)
∆ ⇒ P triv

∆ ⇒ P ⊕Q triv

∆ ⇒ Q triv

∆ ⇒ P ⊕Q triv

We can make a few easy observations about ∆ ⇒ P triv.

Proposition 1 (Subformula property). (i) if ∆ ⇒ P triv, then every formula occurring in ∆ is a subformula6

of P , and moreover (ii) if Q false ∈ ∆, then Q is a proper subformula of P .

4The notation ¬v not only marks this negation as verificationist, but also (foreshadowing) as call-by-value.
5We want to consider direct proofs in a context of assumptions, where it no longer makes sense to call them “canonical”

because the Fundamental Assumption fails.
6Defined in the standard way, i.e., A is a subformula of B if A = B, or if B applies some n-ary connective to formulas

B1, . . . , Bn, and A is a subformula of Bi. Excluding the condition A = B makes A a proper subformula of B.

6

Proposition 2 (Finite support). For any P , there exist only finitely many ∆ such that ∆ ⇒ P triv.
The relation ∆ ⇒ P triv describes “necessary components” for a direct proof of P . To actually construct

a direct proof of P , we must provide each of these components. This can be expressed as a generic rule for
concluding P triv:

∆ ⇒ P triv ∆
P triv

In general, the proofs of the premises ∆ may refer to assumptions, and to make this explicit we use hypothetical
judgments indexed by a context Γ, rewriting the rule as follows:

∆ ⇒ P triv Γ ⊢ ∆
Γ ⊢ P triv

A context Γ is simply a list of linear contexts (we use · for the empty list):

Γ ::= · | Γ,∆

For some primitive hypothesis H (i.e., X triv or P false), we write H ∈ Γ if there exists some ∆ ∈ Γ such
that H ∈ ∆. Now Γ satisfies the premises ∆, written Γ ⊢ ∆, when it can discharge all atomic premises
X triv ∈ ∆, and can provide justified refutations for premises P false ∈ ∆, as expressed by the following
rules:

Γ ⊢ ·
X triv ∈ Γ Γ ⊢ ∆

Γ ⊢ X triv,∆

Γ ⊢ P false Γ ⊢ ∆

Γ ⊢ P false,∆

Example 1. The reader can verify that by instantiating P with X ⊗ (Y ⊕ ¬vQ) and working out these
definitions, we derive two rules for concluding Γ ⊢ X ⊗ (Y ⊕ ¬vQ) triv:

X triv ∈ Γ Y triv ∈ Γ
Γ ⊢ X ⊗ (Y ⊕ ¬vQ) triv

X triv ∈ Γ Γ ⊢ Q false

Γ ⊢ X ⊗ (Y ⊕ ¬vQ) triv
�

We can similarly give a generic rule for establishing P false. Intuitively, a justified refutation of P shows
how to derive a contradiction from the assumption that we have a direct proof of P . Letting contra stand
for a separate contradiction judgment, we obtain the following rule:

∀(∆ ⇒ P triv) : Γ,∆ ⊢ contra

Γ ⊢ P false

The form of this rule may appear somewhat unusual, quantifying over derivations ∆ ⇒ P triv. Due to the
finite support property for the connectives we are considering, the rule will always simply have a finite list
of premises. More abstractly, though, the rule for concluding P false may be seen as an iterated inductive
definition (Martin-Löf, 1971; Buchholz et al., 1981), applying induction on the previously defined relation
∆ ⇒ P triv. Interpreted constructively, the rule demands a map from derivations ∆ ⇒ P triv to derivations
Γ,∆ ⊢ contra. We will exploit this higher-order reading when proving results about the system, and later
on in developing the Curry-Howard interpretation.

Example 2. In the case P = X ⊗ (Y ⊕ ¬vQ), we derive the following rule:

Γ, X triv, Y triv ⊢ contra Γ, X triv, Q false ⊢ contra

Γ ⊢ X ⊗ (Y ⊕ ¬vQ) false
�

Finally, we describe how to establish Γ ⊢ contra. We have a contradiction if we assumed that P is false,
yet can give P a direct proof:

P false ∈ Γ Γ ⊢ P triv

Γ ⊢ contra

Example 3. Let ∆ = (X triv, X false). The following derivation proves the law of non-contradiction:

7

Positive formulas P,Q ::= X | 1 | P ⊗Q | 0 | P ⊕Q | ¬vP
Linear contexts ∆ ::= · | X triv,∆ | P false,∆

∆ ⇒ P triv

X triv ⇒ X triv P false ⇒ ¬vP triv

· ⇒ 1 triv

∆1 ⇒ P triv ∆2 ⇒ Q triv

∆1,∆2 ⇒ P ⊗Q triv

(no rule for 0)
∆ ⇒ P triv

∆ ⇒ P ⊕Q triv

∆ ⇒ Q triv

∆ ⇒ P ⊕Q triv

. .

Contexts Γ ::= · | Γ,∆

Γ ⊢ P triv

∆ ⇒ P triv Γ ⊢ ∆
Γ ⊢ P triv

Γ ⊢ P false

∀(∆ ⇒ P triv) : Γ,∆ ⊢ contra

Γ ⊢ P false

Γ ⊢ ∆

Γ ⊢ ·
X triv ∈ Γ Γ ⊢ ∆

Γ ⊢ X triv,∆

Γ ⊢ P false Γ ⊢ ∆

Γ ⊢ P false,∆

Γ ⊢ contra

P false ∈ Γ Γ ⊢ P triv

Γ ⊢ contra

Figure 1: The positive interpretation

X false ∈ ∆
X triv ∈ ∆
∆ ⊢ X triv

∆ ⊢ contra
⊢ X ⊗ ¬vX false

⊢ ¬v (X ⊗ ¬vX) triv
�

This completes our formalization of the verificationist meaning-theory, which we also call the positive
interpretation of the connectives. The foregoing development is summarized in Figure 1. What more can we
say about it?

Well, we explained the sense in which (as Gentzen/Prawitz/Dummett proposed) the introduction rules
of natural deduction “define” the connectives through a verificationist meaning-theory. In the presentation
here, the rules for ∆ ⇒ P triv literally define the connectives, in the sense that they are the only rules that
mention them! One consequence of this is that we can prove certain properties about the system generically,
without having to reason about particular connectives. In particular, two properties that vouchsafe the
sanity of the logic are “identity” and “reduction”.

Principle 3 (Identity). If P false ∈ Γ then Γ ⊢ P false.

Principle 4 (Reduction). If Γ ⊢ P false and Γ ⊢ P triv then Γ ⊢ contra.
To prove the identity principle, we must simultaneously prove another “context identity” principle:

Principle 5 (Context identity). Γ,∆ ⊢ ∆

8

Proof (of identity and context identity). We first give the mutually-recursive derivations of these identity
principles, and then explain what makes this definition well-founded. The following derivation reduces
identity to context identity:

∀(∆ ⇒ P triv) :

P false ∈ Γ

∆ ⇒ P triv Γ,∆ ⊢ ∆

Γ,∆ ⊢ P triv

Γ,∆ ⊢ contra

Γ ⊢ P false

Both premises P false ∈ Γ and ∆ ⇒ P triv may be discharged, and we are left with the premise Γ,∆ ⊢ ∆.
To prove the context identity principle, we first state a trivial lemma that expands the meaning of Γ ⊢ ∆:

Lemma 6 (Expansion). Γ ⊢ ∆ if and only if for all X triv ∈ ∆ we have X triv ∈ Γ, and for all Q false ∈ ∆
we have Γ ⊢ Q false.

Then Γ,∆ ⊢ ∆, since for all X triv ∈ ∆ we have X triv ∈ Γ,∆ by definition, and for all Q false ∈ ∆ we
have Γ,∆ ⊢ Q false by identity.

Now, the proof of identity on P appealed to context identity on ∆ for ∆ ⇒ P triv. In turn, context
identity on ∆ appealed back to identity on Q for Q false ∈ ∆. By subformula property (ii), Q must be a
proper subformula of P , which makes these derivations well-founded.

We likewise prove reduction simultaneously with another principle of substitution, which we state gener-
ically for any conclusion J (i.e., P triv, P false, ∆, or contra).

Principle 7 (Substitution). If Γ,∆ ⊢ J and Γ ⊢ ∆ then Γ ⊢ J .

Proof (of reduction and substitution). Again we first give a proof making free use of mutual self-reference,
and then show that it is well-founded.

Reduction immediately reduces to substitution: by inversion on the derivation of Γ ⊢ P triv, there must
exist some ∆ ⇒ P triv such that Γ ⊢ ∆, and by inversion on Γ ⊢ P false, we have Γ,∆ ⊢ contra. Hence
Γ ⊢ contra by substitution.

The proof of substitution uses a side-induction on the derivation of Γ,∆ ⊢ J . Almost every case (there are
six, corresponding to each rule in the bottom half of Figure 1) follows immediately by applying substitution
to the premises. The only interesting case is when contra is derived using some hypothesis Q false ∈ ∆, as
in the following:

Q false ∈ ∆ Γ,∆ ⊢ Q triv

Γ,∆ ⊢ contra

By the side-induction on the second premise, we have Γ ⊢ Q triv. By the expansion lemma applied to
assumptions Γ ⊢ ∆ and Q false ∈ ∆, we have Γ ⊢ Q false. Hence Γ ⊢ contra by reduction.

The well-foundedness argument is the same here as for the identity principles. Namely, the proof of
reduction on P appealed to substitution on ∆ such that ∆ ⇒ P false, which in turn appealed back to
reduction on Q for Q false ∈ ∆, and thus Q must be a proper subformula of P .

In terms of provability, there is a simple relationship between the formalism we have defined and ordinary
intuitionistic logic. Let |P | be the operator that converts a positive formula to an ordinary formula:

|X | = X |¬vP | = ¬|P |
|1| = T |P ⊗Q| = |P | ∧ |Q| |0| = F |P ⊕Q| = |P | ∨ |Q|

We extend this operator to judgments as follows:

|P triv| = |P | |P false| = ¬|P | |contra| = F |(J1, . . . , Jn)| = |J1| ∧ . . . ∧ |Jn|

And to contexts Γ pointwise. Then we can state the fact that Figure 1 soundly interprets intuitionistic logic:

9

Proposition 8 (Intuitionistic soundness). If Γ ⊢ J then |Γ| ⊢ |J | is intuitionistically provable.
We will not give the proof of this fact, but it should be intuitive, given how we described the different

judgments. For example with J = P triv, soundness says that if a formula has a direct proof, then it has an
intuitionistic proof. On the other hand completeness fails, because in some context of assumptions, a formula
may be intuitionistically provable without having a direct proof. For example, X,¬X ⊢ F is intuitionistically
provable, but we cannot derive X triv, X false ⊢ 0 triv (although we can derive X triv, X false ⊢ contra).
However, completeness does hold for intuitionistic theorems, i.e., if ⊢ |J | is intuitionistically provable then
⊢ J .

In any case, all of these remarks about provability are simply to give the reader a better feel for the
formalism. The point of our analysis, after all, is to refine the structure of proofs, for which the dividends
will appear only later on.

2.3 A dual formulation

We have seen how to formalize the verificationist meaning-theory through the judgmental method, as well
as how to prove a few basic results about the system. Now we can obtain a pragmatist interpretation by
an almost mechanical dualization. This interpretation is centered on two judgments, N absurd and N true,
stating, respectively, that N has a direct refutation (and hence is not only false but “absurd”), or that
it (merely) has a justified proof. Here N is a negative polarity formula, constructed using the negative
connectives N, ⊤, O, ⊥, and ¬n (which are the pragmatist interpretations of conjunction, truth, disjunction,

falsehood, and negation,7 respectively), together with negative atoms X,Y :

N,M ::= X | ⊤ | NNM | ⊥ | NOM | ¬nN

Again, we begin by axiomatizing the inversion properties of direct refutations as a relation ∆ ⇒ N absurd.

X absurd ⇒ X absurd N true ⇒ ¬nN absurd

(no rule for ⊤)
∆ ⇒ N absurd

∆ ⇒ NNM absurd
∆ ⇒M absurd

∆ ⇒ NNM absurd

· ⇒ ⊥ absurd

∆1 ⇒ N absurd ∆2 ⇒ M absurd

∆1,∆2 ⇒ NOM absurd

In prose, we can gloss these rules as follows: a direct refutation of an atomic proposition must be by
assumption, while a direct refutation of ¬nN is just a justified proof of N ; a direct refutation of NNM is a
direct refutation of N or of M , while there are no direct refutations of ⊤; a direct refutation of NOM is a
direct refutation both of N and of M , while there is only one, trivial direct refutation of ⊥.

Using this relation, we can give a general rule for concluding N absurd under some context of assumptions
Γ:

∆ ⇒ N absurd Γ ⊢ ∆
Γ ⊢ N absurd

where Γ ⊢ ∆ is defined analogously to before:

Γ ⊢ ·

X absurd ∈ Γ Γ ⊢ ∆

Γ ⊢ X absurd,∆
Γ ⊢ N true Γ ⊢ ∆

Γ ⊢ N true,∆

Example 4. For N = XN(YO¬nM) we derive the following rules:

X absurd ∈ Γ

Γ ⊢ XN(YO¬nM) absurd

Y absurd ∈ Γ Γ ⊢M true

Γ ⊢ XN(YO¬nM) absurd
�

7The notation ¬n not only marks this negation as negative, but also (foreshadowing) as call-by-name.

10

The notion of justified proof is defined as follows: N is justified if we can derive a contradiction from any
direct refutation of N .

∀(∆ ⇒ N absurd) : Γ,∆ ⊢ contra

Γ ⊢ N true

Example 5. For N = XN(YO¬nM) we have:

Γ, X absurd ⊢ contra Γ, Y absurd,M true ⊢ contra

Γ ⊢ XN(YO¬nM) true
�

Finally, to establish a contradiction from Γ, we must find some hypothesis N true ∈ Γ, and show that N is
false by giving a direct refutation:

N true ∈ Γ Γ ⊢ N absurd
Γ ⊢ contra

Example 6. Let ∆ = (X absurd, X true). We prove the law of excluded middle as follows:

X true ∈ ∆

X absurd ∈ ∆

∆ ⊢ X absurd
∆ ⊢ contra

⊢ XO¬nX true
�

A summary of all these rules is given in Figure 2. From Example 6, it is clear that the judgment N true
does not correspond to intuitionistic truth. In fact, it corresponds to what Czermak has called “dual
intuitionistic” and Goodman “anti-intuitionistic” truth (Czermak, 1977; Goodman, 1981). Conversely, the
judgmentN absurd is more stringent than intuitionistic falsehood, roughly corresponding to what Nelson calls
“constructible falsity” (Nelson, 1949). Formally, we can state a simple duality principle between the positive
and negative interpretations. We first define (−)⊥ as an operator taking positive formulas to negative, and
vice versa:8

X⊥ = X X
⊥

= X
1⊥ = ⊥ 0⊥ = ⊤ ⊤⊥ = 0 ⊥⊥ = 1

(P ⊗Q)⊥ = P⊥
OQ⊥ (P ⊕Q)⊥ = P⊥

NQ⊥

(NNM)
⊥

= N⊥ ⊕M⊥ (NOM)
⊥

= N⊥ ⊗M⊥

(¬vP)
⊥

= ¬nP⊥ (¬nN)
⊥

= ¬vN⊥

We extend it to judgments with (P triv)
⊥

= P⊥ absurd, (P false)
⊥

= P⊥ true, (N absurd)
⊥

= N⊥ triv,

(N true)⊥ = N⊥ false, and contra⊥ = contra, and finally we extend it to contexts pointwise. Then the
following observation is immediate:

Principle 9 (Duality). Γ ⊢ J iff Γ⊥ ⊢ J⊥

Note also that P⊥⊥ = P and N⊥⊥ = N . An immediate corollary is that the negative interpretation
satisfies identity and reduction principles analogous to the ones for the positive interpretation.

Principle 10 (Identity). If N true ∈ Γ then Γ ⊢ N true.

Principle 11 (Reduction). If Γ ⊢ N true and Γ ⊢ N absurd then Γ ⊢ contra.

8A technical remark on the atomic case: abstractly, dualization must assign to each positive atom an associated “dual”
negative atom, and vice versa. We achieve this with the syntactic trick of adding and removing an overline.

11

Negative formulas N,M ::= X | ⊤ | NNM | ⊥ | NOM | ¬nN

Linear contexts ∆ ::= · | X absurd,∆ | N true,∆

∆ ⇒ N absurd

X absurd ⇒ X absurd N true ⇒ ¬nN absurd

(no rule for ⊤)
∆ ⇒ N absurd

∆ ⇒ NNM absurd

∆ ⇒M absurd

∆ ⇒ NNM absurd

· ⇒ ⊥ absurd

∆1 ⇒ N absurd ∆2 ⇒M absurd

∆1,∆2 ⇒ NOM absurd

. .

Contexts Γ ::= · | Γ,∆

Γ ⊢ N absurd

∆ ⇒ N absurd Γ ⊢ ∆
Γ ⊢ N absurd

Γ ⊢ N true

∀(∆ ⇒ N absurd) : Γ,∆ ⊢ contra

Γ ⊢ N true

Γ ⊢ ∆

Γ ⊢ ·

X absurd ∈ Γ Γ ⊢ ∆

Γ ⊢ X absurd,∆
Γ ⊢ N true Γ ⊢ ∆

Γ ⊢ N true,∆

Γ ⊢ contra

N true ∈ Γ Γ ⊢ N absurd

Γ ⊢ contra

Figure 2: The negative interpretation

12

2.4 The unity of duality

Given the formal duality between verificationist and pragmatist interpretations, it seems that a choice of
one over the other has, to use Dummett’s expression, “no more force than the converse suggestion.” Yet, as
we have stressed, the two interpretations really define different connectives. Rather than making a choice
between them, then, why not just combine the two interpretations?

The easiest way of doing this is simply to take the union of the two systems, letting contexts contain a
mix of primitive hypotheses X triv, P false, X absurd, N true, and allowing inference by any of the rules in
Figures 1 and 2. A moment’s reflection verifies that the combined system is coherent, in particular that the
proofs of the various identity, reduction, and substitution principles in Sections 2.2 and 2.3 remain essentially
unchanged. Another moment’s reflection, however, reveals that this combined system is not very interesting,
because of the syntactic separation between positive and negative formulas.

To break this impasse we add a pair of mediating connectives:

P,Q ::= · · · | ↓N
N,M ::= · · · | ↑P

The notation is borrowed from Girard (2001), who calls these the “shift” connectives. In terms of our
judgmental analysis, the meaning of these connectives may be explained as modalities: ↓ embeds the weaker
(i.e., more permissive) notion of justified proof as a modality of direct proof, while ↑ embeds the weaker
notion of justified refutation as a modality of direct refutation. Formally, we represent this meaning for the
shifts with a pair of inversion rules:

N true ⇒ ↓N triv P false ⇒ ↑P absurd

The resulting unified logic, which we call polarized logic, now allows verificationist and pragmatist interpre-
tations to be related in non-trivial ways, beyond formal duality. Let us first give some intuition for the shift
connectives with a few examples.

Example 7. On the left we give the derived rule for concluding ↓N triv, while on the right we show one
way of deriving ↑P true:

Γ ⊢ N true
Γ ⊢ ↓N triv

Γ ⊢ P triv

Γ, P false ⊢ contra

Γ ⊢ ↑P true

The double line in the second derivation represents the following line of inference: weaken Γ ⊢ P triv to
Γ, P false ⊢ P triv, then derive Γ, P false ⊢ contra by applying the hypothesis P false. �

Example 8. Let ∆ = (P false,¬vP false). Starting from ∆ ⊢ P false (by the identity principle), we derive
⊢ ↑PO ↑¬vP true.

¬vP false ∈ ∆

∆ ⊢ P false

∆ ⊢ ¬vP triv

∆ ⊢ contra
⊢ ↑PO ↑¬vP true

�

13

In the Introduction, we alluded to the idea that Dummett’s analysis represents a “square of opposition”
between different kinds of inference:

direct proof of A justified refutation of A

justified proof of A direct refutation of A

Using polarized logic, we can replace the boxes with polarized judgments, and annotate the edges with
connectives:

P triv P false

N true N absurd

¬v

↑

¬n

↓
(−)

⊥

The diagram “commutes”, in the following sense.

Definition 12. For two positive formulas P,Q, we say that P ≤ Q if for all ∆ ⇒ P triv, there exists
∆′ ⇒ Q triv such that ∆ ⊢ ∆′. For two negative formulas we say M ≤ N if for all ∆ ⇒ N absurd, there
exists ∆′ ⇒M absurd such that ∆ ⊢ ∆′. We write P ≡ Q if P ≤ Q and Q ≤ P , and M ≡ N if M ≤ N and
N ≤M .

Proposition 13. ≤ is a partial order (and hence ≡ an equivalence relation).

Proof. Reflexivity holds by context identity, and transitivity by substitution.

Proposition 14. Let P,Q,R be positive formulas such that P ≤ Q. Let L,M,N be negative formulas such
that M ≤ N . Then the following hold:

1. P ⊗R ≤ Q⊗R and R⊗ P ≤ R⊗Q

2. P ⊕R ≤ Q⊕R and R⊕ P ≤ R⊕Q

3. Q⊥ ≤ P⊥

4. ¬vQ ≤ ¬vP

5. ↑P ≤ ↑Q

6. LNM ≤ LNN and MNL ≤ NNL

7. LOM ≤ LON and MOL ≤ NOL

8. ¬nN ≤ ¬nM

14

9. N⊥ ≤M⊥

10. ↓M ≤ ↓N

Proof. (1–3) are immediate. (4) and (5) are both by the following derivation:

∀(∆ ⇒ P triv) :

∆′ ⇒ Q triv ∆ ⊢ ∆′

Q false,∆ ⊢ contra

Q false ⊢ P false

where the double line represents the following line of inference: we have ∆′ ⇒ Q triv and ∆ ⊢ ∆′ (for some
∆′) by the assumption P ≤ Q, and hence ∆ ⊢ Q triv, which we can weaken to Q false,∆ ⊢ Q triv, and
obtain Q false,∆ ⊢ contra by applying Q false. (6–10) are dual to (1–5).

Now we can relate the shifts, negations, and the dualizing operator. Note that the definition of (−)⊥

extends to the shifts by (↓N)
⊥

= ↑N⊥, (↑P)
⊥

= ↓P⊥.9

Proposition 15. The following equivalences hold:

1. ¬vP ≡ ↓P⊥

2. ¬nN ≡ ↑N⊥

3. ↓↑P ≡ ¬v¬vP

4. ↑↓N ≡ ¬n¬nN

Proof. (1) and (2) are immediate. For (3), we have ¬v¬vP ≡ ↓(¬vP)⊥ ≡ ↓(↓P⊥)⊥ = ↓↑P⊥⊥ = ↓↑P , and
similarly for (4).

Hopefully we have at least somewhat demystified the meaning of Girard’s shift connectives. After we
develop the Curry-Howard interpretation of polarized logic, the shifts will become even more concrete. There,
we will see that they model control effects: ↓N is the type of a suspended expression of type N , while ↑P the
type of a captured continuation accepting type P . But we hold off on defining the programming language
for just a while longer, in order to explain the relationship of this unified logic of proofs and refutations to
Andreoli’s notion of “focusing” strategies for sequent calculi.

2.5 Focusing the classical sequent calculus

The technique of focusing was originally invented as a way of guiding bottom-up proof search in linear logic
(Andreoli, 1992). In general, bottom-up search works by reading each rule as a suggestion, “To prove the
conclusion, try proving the premises.” Starting from a goal sequent, one looks for a proof by provisionally
invoking rules to obtain a new set of subgoals until, hopefully, all goals can be discharged. Unfortunately,
at each stage of the search there are often multiple rules that could be applied to the goal, and a priori
we have no way of knowing which will lead to a successful proof. Therefore we must try many different
interleavings of rules, creating a combinatorial explosion of the search space, which for linear logic turns out
to be intractable.

Andreoli’s observation was two-fold. First, about half of the rules of linear logic are invertible, i.e., their
conclusion implies their premise. In particular, the right-rules for the negative connectives N,O,⊤,⊥ are

9 Rather than defining (−)⊥ as an operator on formulas and judgments, we can alternatively define it as a first-class
connective by adding inversion rules:

∆ ⇒ P triv

∆ ⇒ P⊥ absurd

∆ ⇒ N absurd

∆ ⇒ N⊥ triv

Then (↓N)⊥ ≡ ↑N⊥ and (↑P)⊥ ≡ ↓P⊥ are equivalences rather than equalities.

15

invertible, as are the left-rules for the positive connectives ⊗,⊕, 1, 0.10 These rules can be applied greedily, in
an arbitrary order, preserving the provability of the goal. Second, and less intuitively, one can also chain the
application of non-invertible rules by “focusing” on some formula and applying a sequence of non-invertible
rules. In particular, while a formula is in focus one need not attempt to decompose any other formula.
Combining these observations, one can describe a bottom-up focusing proof search procedure for linear logic
as follows:

1. Greedily decompose positive connectives on the left and negative connectives on the right by applying
invertible rules, until the goal sequent becomes stable, i.e., has only negative formulas and positive
atoms on the left, and positive formulas and negative atoms on the right.

2. Focus on some formula in a stable sequent, and attempt to prove the goal using the rule(s) associated
with the formula’s principal connective. Keep focus on the formula’s subformulas and repeat this step,
until reaching a polarity mismatch, i.e., a positive formula in left focus, or a negative formula in right
focus.

3. On a polarity mismatch, blur the sequent (i.e., lose focus) and go back to stage (1).

Finally, this description may be refined with one additional observation (Andreoli, 2001): the particular
sequence of left and right rules occurring within stages (1) and (2) is unimportant, and one can instead
consider each stage as a single step. By this view, stage (1) applies a single, invertible rule for decomposing
a “compound connective”, with a set of stable sequents as premises. Stage (2) applies one rule from a set
of derived rules for introducing the compound connective in focus—the choice of which rule to apply is part
of the non-determinism of proof search (the additional source of non-determinism being the transition from
(1) to (2), i.e., the choice of formula to focus on).

From the point of view of proof search, the crucial fact is that focusing is not only sound (obvious,
since it is just a restriction of ordinary bottom-up search) but also complete: if a linear logic sequent is
provable, then it has a focusing proof. To say that focusing is merely a “speed-up” of proof search is not to
do it justice, however. Soon after Andreoli’s work, Girard (1993) proposed that polarity (i.e., the focusing
behavior of connectives) was a general phenomenon that could be used to study logic in a unified setting.
In particular, he explained that the connectives of classical logic have ambiguous polarity, but that different
proofs can be isolated with different polarizations of the connectives. The connectives of intuitionistic logic
are likewise ambiguous for the most part, but on the other hand, some of its characteristic features such as
the disjunction and existence properties can be explained by those connectives having positive polarity. More
recently, Girard (2001) has taken focusing proofs as the starting point for a general study of the meaning of
logical rules.

But how does this relate to Dummett’s analysis of the meaning of logical rules? To give away the
punchline, our multi-judgment reconstruction of Dummett’s analysis may alternatively be seen as a focusing
analysis of the classical sequent calculus. We now describe this correspondence.

Given a context of hypotheses Γ, we define a pair of multisets of polarized formulas (ΛΓ,ΘΓ) (omitting
the subscript when clear from context, no pun intended):

Λ = {X | X triv ∈ Γ} ∪ {N | N true ∈ Γ}

Θ = {X | X absurd ∈ Γ} ∪ {P | P false ∈ Γ}

Now, we define five kinds of sequents—four styles of focused sequents (which have a single polarized formula
in focus on either the left or right), as well as unfocused sequents:

Λ → Θ | P P | Λ → Θ
Λ → Θ | N N | Λ → Θ

Λ → Θ

Hypothetical judgments of polarized logic can be rewritten as focused and unfocused sequents, as follows:

10Andreoli considers a one-sided sequent calculus for linear logic, and rather than negative vs. positive polarity he uses the
terms “asynchronous” vs. “synchronous”.

16

Γ ⊢ P triv ↔ Λ → Θ | P
Γ ⊢ P false ↔ P | Λ → Θ
Γ ⊢ N true ↔ Λ → Θ | N

Γ ⊢ N absurd ↔ N | Λ → Θ
Γ ⊢ contra ↔ Λ → Θ

The judgment Γ ⊢ ∆ is mapped to a set of sequents (and assertions “X ∈ Λ” or “X ∈ Θ”) by applying
the expansion lemma. Observe that “truthy” hypotheses (X triv and N true) become formulas on the left
side of the sequent, but “truthy” conclusions (P triv and N true) become formulas in right-focus. Likewise,
“falsish” hypotheses become formulas on the right side of the sequent, while “falsish” conclusions become
formulas in left-focus. We illustrate with a few examples.

Example 9. In Example 1, we found two rules for proving X ⊗ (Y ⊕ ¬vQ) directly:

X triv ∈ Γ Y triv ∈ Γ
Γ ⊢ X ⊗ (Y ⊕ ¬vQ) triv

X triv ∈ Γ Γ ⊢ Q false

Γ ⊢ X ⊗ (Y ⊕ ¬vQ) triv

Via the above translation, these become rules for deriving the formula in right-focus:

X ∈ Λ Y ∈ Λ
Λ → Θ | X ⊗ (Y ⊕ ¬vQ)

X ∈ Λ Q | Λ → Θ

Λ → Θ | X ⊗ (Y ⊕ ¬vQ)
�

Example 10. In Example 2, we gave the rule for refuting X ⊗ (Y ⊕ ¬vQ):

Γ, X triv, Y triv ⊢ contra Γ, X triv, Q false ⊢ contra

Γ ⊢ X ⊗ (Y ⊕ ¬vQ) false

After translation this becomes a rule for decomposing the formula in left-focus:

X,Y,Λ → Θ X,Λ → Θ, Q

X ⊗ (Y ⊕ ¬vQ) | Λ → Θ
�

Example 11. We had two rules for establishing contradiction:

P false ∈ Γ Γ ⊢ P triv

Γ ⊢ contra
N true ∈ Γ Γ ⊢ N absurd

Γ ⊢ contra

After translation these are read as proof-search rules for “choosing” a focus on the right or left of the sequent:

P ∈ Θ Λ → Θ | P

Λ → Θ

N ∈ Λ N | Λ → Θ

Λ → Θ
�

Now, extending the definition of Section 2.2, we define |−| as the operator that “forgets” polarity, con-
verting a polarized formula to an ordinary propositional formula.

Definition 16. |P | and |N | are defined as follows:11

|1| = |⊤| = T |0| = |⊥| = F

|P ⊗Q| = |P | ∧ |Q| |NNM | = |N | ∧ |M |
|P ⊕Q| = |P | ∨ |Q| |NOM | = |N | ∨ |M |

|¬vP | = ¬|P | |¬nN | = ¬|N |
|↓N | = |N | |↑P | = |P |
|X | = X |X| = X

11Observe we do not define |X| = X. Polarity may be thought of as a fixed partitioning of the set of atoms, which does not
go away even if we forget about it.

17

Logical judgment Typing judgment Meaning of typing judgment

Γ ⊢ P triv Γ ⊢ V
val
: P value V has type P

Γ ⊢ P false Γ ⊢ K
cnt
: P CBV continuation K accepts type P

Γ ⊢ N absurd Γ ⊢ C
cov
: N “covalue” C accepts type N

Γ ⊢ N true Γ ⊢ E
exp
: N expression E has type N

Γ ⊢ ∆ Γ ⊢ σ
sub
: ∆ σ is a well-typed substitution for ∆

Γ ⊢ contra Γ ⊢ S
stm
: # statement S is well-typed

Figure 3: Curry-Howard interpretation of polarized logic

In other words, |−| collapses oppositely polarized conjunctions, disjunctions, and negations, and erases the
shift operators.12 For any unpolarized formula, we can consider its polarizations, i.e., the inverse image of
|−|. Clearly, |−| is not injective—any formula can be given at least two polarizations, one positive and one
negative, and in fact there are infinitely many, corresponding to arbitrary compositions of the shift operators.

The completeness of focusing can now be stated as follows:

If |Λ| → |Θ| is classically provable, then Λ → Θ has a focusing proof.

We will wait until Section 3.5 to prove the completeness theorem, so that we can annotate it with terms from
the Curry-Howard interpretation (developed below), and thus better illustrate the computational content
of completeness. Intuitively, though, we should already be able to see that focusing proofs for different
polarizations of classical theorems correspond to different kinds of double-negation translations. For instance,
suppose A is true classically, and that P is one possible polarization (|P | = A). Then completeness says
that · → P has a focusing proof—but by the correspondence we established above, this is just alternative
notation for the hypothetical judgment P false ⊢ contra.

In Section 2.2, we explained how the positive fragment of polarized logic soundly and completely interprets
intuitionistic logic (or to be precise, its theorems). Likewise, in Section 2.3 we alluded to a similar relationship
between the negative fragment and Czermak’s dual intuitionistic logic. And now we have just claimed that
polarized logic soundly and completely interprets the classical sequent calculus. Thus much in the spirit of
Girard’s LU (Girard, 1993), polarized logic serves as a bridge between different logical traditions.

But we care not only about provability, but also about proofs. In the next section, we explore the
structure of proofs in polarized logic by giving it a Curry-Howard interpretation. We will find that various
concepts from the tradition of programming languages emerge out of this analysis. For example, pattern-
typing is revealed as a natural analogue of the logical inversion judgments. Moreover, we will explain how
polarization explicitly reflects evaluation order at the level of types, and thus gives a logical foundation for
studying operationally-sensitive typing phenomena.

3 The logic of values and continuations (and their duals)

We saw how Dummett’s analysis of the justification of logical laws through alternative “meaning-theories”
could be formalized through the judgmental method as polarized logic, a rich setting for describing different
notions of proof and refutation. Now, we will explain how the judgments of polarized logic each correspond
precisely to natural programming language constructs. A summary of this correspondence is given in Fig-
ure 3, defining a programming language which we call the Calculus of Unity, or CU. We explain it in detail,
beginning with the positive fragment.

3.1 The call-by-value fragment

Recall that the central objects of a verificationist meaning-theory are direct proofs and the corresponding
inferences they justify. In Section 2.2, we represented these concepts by judgments P triv (“P has a direct

12If (−)⊥ were defined as a first-class connective (see Footnote 9), we would likewise collapse it to negation.

18

proof”) and P false (“P has a justified refutation”). The core idea behind the Curry-Howard isomorphism
is that

direct proofs ∼= values
justified refutations ∼= call-by-value continuations

Correspondingly, the two logical judgments will become typing judgments V
val
: P (“value V has type P”)

and K
cnt
: P (“call-by-value continuation K accepts type P”).

But again recall that we did not give rules for the logical judgments directly, but instead stated them
in terms of a relation ∆ ⇒ P triv, which holds whenever a direct proof of P could have ∆ as its fringe
of primitive premises. So what do different derivations of ∆ ⇒ P look like? Abstractly, they describe the
shape or the pattern that a direct proof of P takes, up to the point where it reaches primitive premises.
Let us label these primitive hypotheses in ∆ with variables: atomic value variables x

val
: X and continuation

variables u
cnt
: P . Then we can interpret ∆ ⇒ P triv as pattern-typing:

x
val
: X ⇒ x

val
: X u

cnt
: P ⇒ u

val
: ¬vP

· ⇒ ()
val
: 1

∆1 ⇒ p1

val
: P ∆2 ⇒ p2

val
: Q

∆1,∆2 ⇒ (p1, p2)
val
: P ⊗Q

(no rule for 0)

∆ ⇒ p
val
: P

∆ ⇒ inl(p)
val
: P ⊕Q

∆ ⇒ p
val
: Q

∆ ⇒ inr(p)
val
: P ⊕Q

With this interpretation, observe that some of the formal characteristics of the logical axiomatization are
mapped to quite familiar (to programmers) features of pattern-matching. For example, the linearity of
∆ corresponds to the usual restriction that patterns cannot bind a variable more than once. The fact
that P false ⇒ ¬vP triv is a base case corresponds to the restriction that one cannot pattern-match on
continuations. Pattern-typing satisfies a few additional, simple properties. We say that p is a P -pattern if
there exists some ∆ such that ∆ ⇒ p

val
: P

Proposition 17. For any P , there exist only finitely many P -patterns.

Proposition 18. If p is a P -pattern, then there exists a unique ∆ such that ∆ ⇒ p
val
: P .

These properties will play a role analogous to that of the finite support property in Section 2.2, i.e., not a
very significant one.13 What is crucial about derivations of ∆ ⇒ p

val
: P is (as for their logical counterparts)

simply their inductive definition, and hence our ability to meaningfully quantify over them.
With pattern-typing defined, we can give the rules for type-checking values and continuations. The single

rule for establishing P triv in context was

∆ ⇒ P triv Γ ⊢ ∆
Γ ⊢ P triv

Now, the first premise is annotated with a pattern p. The second premise is annotated with an explicit
substitution σ, as we will describe shortly. By pairing these two objects, we form a value:

∆ ⇒ p
val
: P Γ ⊢ σ

sub
: ∆

Γ ⊢ [σ]p
val
: P

An explicit substitution is a list of term-for-variable replacements. It is a well-typed substitution for ∆ if all
the terms have the appropriate types. Within the positive fragment, ∆ contains only hypotheses x

val
: X and

u
cnt
: P , so that the following substitution-checking rules suffice:

Γ ⊢ ·
sub
: ·

y
val
: X ∈ Γ Γ ⊢ σ

sub
: ∆

Γ ⊢ (y/x, σ)
sub
: (x

val
: X,∆)

Γ ⊢ K
cnt
: P Γ ⊢ σ

sub
: ∆

Γ ⊢ (K/u, σ)
sub
: (u

cnt
: P,∆)

13Indeed, one can consider introducing pattern-typing rules that break one or both properties, as we will discuss in Section 4.

19

The explicit substitution notation for values may seem strange, but it is really interchangeable with a
traditional abstract syntax tree notation. Indeed, if V is a tree, the equation V = [σ]p can be seen as
“factoring” V into a rooted subtree p together with a fringe σ. This factorization is unique (given the
grammar of patterns), so without danger we will use either notation.

Example 12. Let K
cnt
: P be a well-typed continuation (in some context Γ). Then we have V

val
: (¬vP)⊗(¬vP)

where V = [K/u1,K/u2](u1, u2), which we can also simply write as (K,K). �

Moving onward, the single rule for establishing P false in context was

∀(∆ ⇒ P triv) : Γ,∆ ⊢ contra

Γ ⊢ P false

Again, each derivation ∆ ⇒ P triv is annotated with a pattern p, while (as we describe below) proofs
of contradiction are annotated with executable statements. Thus we can interpret continuations accepting
type P as maps from P -patterns to well-typed statements. Or to be more precise, we interpret untyped
continuations by partial maps from patterns to statements, and (letting φ range over such mappings) check
that they accept type P as follows:

∀(∆ ⇒ p
val
: P) : Γ,∆ ⊢ φ(p)

stm
: #

Γ ⊢ (λφ)
cnt
: P

As for its logical counterpart, this typing rule deserves a bit of explanation. Abstractly, the syntax of a
continuation simply specifies, for any pattern, (at most) a single statement to execute, with variables bound
by the pattern. The typing rule checks that for any P -pattern p, in any context ∆ (actually unique by
Proposition 18) assigning types to the variables bound by p, there is a statement associated with p, and that
it is well-typed. Adopting the concrete syntax of, say, ML, we could specify such a continuation by a finite
list of branches p1 7→ S1 | · · · | pn 7→ Sn. Indeed, Proposition 17 ensures that we can always do this for
well-typed continuations. However, as we work with CU, we will find that it is quite convenient to apply
this more abstract, higher-order syntax for continuations.

Finally, we give the rule for forming well-typed statements, obtained by annotating the rule for contra-
diction:

P false ∈ Γ Γ ⊢ P triv

Γ ⊢ contra

u
cnt
: P ∈ Γ Γ ⊢ V

val
: P

Γ ⊢ u V
stm
: #

The statement u V has the intuitive reading, “Pass the value V to the continuation variable u”.

Example 13. Let 2 = 1⊕1 be the type of booleans, and let t and f be names for the patterns inl() and inr(),
respectively. We treat t and f both as 2-patterns and as closed values of type 2. Now, we define partial maps
not and xor from patterns to statements, respectively implementing the “not” and “exclusive-or” boolean
operators in continuation-passing-style (CPS):

not (t, u) = u f

not (f, u) = u t

xor ((t, t), u) = u f

xor ((t, f), u) = u t

xor ((f, t), u) = u t

xor ((f, f), u) = u f

Then not = (λnot) and xor = (λxor) are, respectively, continuations accepting types 2⊗¬v 2 and (2 ⊗ 2) ⊗ ¬v 2,
as the reader can verify. �

What about the properties we proved in Section 2.2 to demonstrate the coherence of the logical rules,
namely the identity and reduction principles? Rather than translating the proofs of those properties, we will
instead internalize the principles in the language, providing additional ways of forming continuations and
statements:

20

u
cnt
: P ∈ Γ

Γ ⊢ u
cnt
: P

Γ ⊢ K
cnt
: P Γ ⊢ V

val
: P

Γ ⊢ K V
stm
: #

Identity forms a continuation by coercing a continuation variable, while reduction forms a statement by
pairing a continuation to a value (with the intuitive reading: “Pass value V to continuation K”). The
following example illustrates both uses.

Example 14. We define a higher-order function nc, which checks that a unary boolean operator is non-
constant. nc is defined in CPS, as a continuation accepting type ¬v (2 ⊗ ¬v 2) ⊗ ¬v 2:

nc (u, u′) = u (t, λb1.u (f, λb2.xor ((b1, b2), u
′)))

nc = (λnc)

Note that in the definition of nc, b1 and b2 are meta-variables quantifying over 2-patterns. The reduction
principle was used to pass a value to xor (which is not a variable), while the identity principle was used to
coerce the variable u′ into a continuation (and then into a value, passed to xor along with (b1, b2)). Also
observe that the definition of nc chooses an explicit evaluation order: first evaluating u on t and storing the
result in b1, then evaluating u on f and storing the result in b2, and finally computing the exclusive-or of
(b1, b2). �

Borrowing terminology from the λ-calculus, we could say that terms that do not apply the identity
principle are “η-long”, while terms that do not apply the reduction principle are “β-reduced”. Internalizing
identity and reduction thus corresponds to allowing terms that are not η-long and β-reduced.

On the other hand, we choose not to internalize the principles of context identity and substitution as
typing rules, instead building the associated terms explicitly. Context identity is formulated as follows:

Proposition 19 (Context identity). For any linear context ∆, we can build ◦∆, the substitution which maps

all variables in ∆ to themselves. Then for all Γ we have Γ,∆ ⊢ ◦∆

sub
: ∆.

The context identity principle allows us to extend the notational convention introduced in Example 13.

Notation. If p is a P -pattern ∆ ⇒ p
val
: P , we can also write p for the value [◦∆]p. Note that for all Γ we

have Γ,∆ ⊢ p
val
: P .

Later, when we define the operational semantics of CU, the substitution principle will become an explicit
substitution operation on terms. First, though, let us finish describing the rest of the language. The positive
fragment is summarized in Figure 4.

3.2 The call-by-name fragment

Defining the negative fragment of CU is easy, simply by dualizing the positive fragment. Understanding
what it means is a bit more tricky though! The rough idea is that values are replaced by covalues, which
represent a sort of continuation in canonical form. In particular, unlike call-by-value continuations, it is
sensible to pattern-match against covalues—and this is how lazy expressions are defined. We will present
the typing rules without much comment, and then try to provide more examples and intuitions.

∆ now contains atomic covalue variables x
cov
: X and expression variables u

exp
: N , and ∆ ⇒ N absurd is

interpreted as copattern-typing:

x
cov
: X ⇒ x

cov
: X u

exp
: N ⇒ u

cov
: ¬nN

(no rule for ⊤)

∆ ⇒ p
cov
: N

∆ ⇒ fst(p)
cov
: NNM

∆ ⇒ p
cov
: M

∆ ⇒ snd(p)
cov
: NNM

· ⇒ []
cov
: ⊥

∆1 ⇒ p1

cov
: N ∆2 ⇒ p2

cov
: M

∆1,∆2 ⇒ [p1, p2]
cov
: NOM

A covalue is constructed by pairing a copattern with an explicit substitution:

∆ ⇒ p
cov
: N Γ ⊢ σ

sub
: ∆

Γ ⊢ [σ]p
cov
: N

21

Linear contexts ∆ ::= · | x
val
: X,∆ | u

cnt
: P,∆

∆ ⇒ p
val
: P

x
val
: X ⇒ x

val
: X u

cnt
: P ⇒ u

val
: ¬vP

· ⇒ ()
val
: 1

∆1 ⇒ p1
val
: P ∆2 ⇒ p2

val
: Q

∆1,∆2 ⇒ (p1, p2)
val
: P ⊗Q

(no rule for 0)

∆ ⇒ p
val
: P

∆ ⇒ inl(p)
val
: P ⊕Q

∆ ⇒ p
val
: Q

∆ ⇒ inr(p)
val
: P ⊕Q

. .

Contexts Γ ::= · | Γ,∆

Γ ⊢ V
val
: P

∆ ⇒ p
val
: P Γ ⊢ σ

sub
: ∆

Γ ⊢ [σ]p
val
: P

Γ ⊢ K
cnt
: P

∀(∆ ⇒ p
val
: P) : Γ,∆ ⊢ φ(p)

stm
: #

Γ ⊢ (λφ)
cnt
: P

u
cnt
: P ∈ Γ

Γ ⊢ u
cnt
: P

Γ ⊢ σ
sub
: ∆

Γ ⊢ ·
sub
: ·

y
val
: X ∈ Γ Γ ⊢ σ

sub
: ∆

Γ ⊢ (y/x, σ)
sub
: (x

val
: X,∆)

Γ ⊢ K
cnt
: P Γ ⊢ σ

sub
: ∆

Γ ⊢ (K/u, σ)
sub
: (u

cnt
: P,∆)

Γ ⊢ S
stm
: #

u
cnt
: P ∈ Γ Γ ⊢ V

val
: P

Γ ⊢ u V
stm
: #

Γ ⊢ K
cnt
: P Γ ⊢ V

val
: P

Γ ⊢ K V
stm
: #

Figure 4: CU type system (positive fragment)

22

where explicit substitutions are defined as before, but with additional rules for satisfying negative hypotheses:

y
cov
: X ∈ Γ Γ ⊢ σ

sub
: ∆

Γ ⊢ (y/x, σ)
sub
: (x

cov
: X,∆)

Γ ⊢ E
exp
: N Γ ⊢ σ

sub
: ∆

Γ ⊢ (E/u, σ)
sub
: (u

exp
: N,∆)

Expressions are defined by pattern-matching against covalues. Letting ψ ranges over partial maps from
copatterns to statements, we write the expression typing rule as:

∀(∆ ⇒ p
cov
: N) : Γ,∆ ⊢ ψ(p)

stm
: #

Γ ⊢ (µψ)
exp
: N

This µ can be seen as a generalization of µ in the λµ-calculus (Parigot, 1992), as we explain in Section 3.3
below. The negative fragment introduces an additional form of statement, which passes a covalue to an
expression variable:

u
exp
: N ∈ Γ Γ ⊢ C

cov
: N

Γ ⊢ u C
stm
: #

Finally, again we internalize the identity and reduction principles:

u
exp
: N ∈ Γ

Γ ⊢ u
exp
: N

Γ ⊢ E
exp
: N Γ ⊢ C

cov
: N

Γ ⊢ E C
stm
: #

The negative fragment is summarized in Figure 5.

Example 15. Let E1

exp
: N and E2

exp
: M be expressions. Define the partial map pair from copatterns to

statements as follows (p1 and p2 are meta-variables ranging over all N -copatterns and M -copatterns, respec-
tively):

pair fst(p1) = E1 p2

pair snd(p2) = E2 p1

Then E = (µpair) is an expression of type NNM (reader: verify this fact!). Intuitively, E is a lazy pair
because, so to speak, it waits for its continuation to make a “decision” about which component to project
before evaluating E1 or E2. As we formalize in the operational semantics below, the statement E fst(C)
always evaluates to E1 C, and E snd(C) always to E2 C, regardless of the definitions of E1 and E2 (even if,
say, M = ⊥). �

Example 16. We define the “first projection” map π1 in CPS by π1 [u, p] = u fst(p). Then (µπ1) is an
expression of type ¬n (NNM)ON . �

As Examples 13 and 16 suggest, in general we can interpret the call-by-value function space P→v Q via CPS
transformation by continuations accepting type P ⊗¬vQ (or values of type ¬v (P ⊗¬vQ)), and the call-by-name
function space N →n M by expressions of type ¬nNOM . These typings of Plotkin’s CPS transformations are
analogous to several others that appear in the literature (Plotkin, 1975; Streicher and Reus, 1998; Selinger,
2001; Wadler, 2003; Laurent, 2005). However, they are only a starting point for the analysis of real call-by-
value and call-by-name languages. If we want to model languages such as ML and Haskell, we can get a
much closer interpretation if we do not confine ourselves to the positive or negative fragments, instead using
all of CU. For this we need the shift operators.

23

Linear contexts ∆ ::= · · · | x
cov
: X,∆ | u

exp
: N,∆

∆ ⇒ p
cov
: N

x
cov
: X ⇒ x

cov
: X u

exp
: N ⇒ u

cov
: ¬nN

(no rule for ⊤)

∆ ⇒ p
cov
: N

∆ ⇒ fst(p)
cov
: NNM

∆ ⇒ p
cov
: M

∆ ⇒ snd(p)
cov
: NNM

· ⇒ []
cov
: ⊥

∆1 ⇒ p1

cov
: N ∆2 ⇒ p2

cov
: M

∆1,∆2 ⇒ [p1, p2]
cov
: NOM

. .

Γ ⊢ C
cov
: N

∆ ⇒ p
cov
: N Γ ⊢ σ

sub
: ∆

Γ ⊢ [σ]p
cov
: N

Γ ⊢ E
exp
: P

∀(∆ ⇒ p
cov
: N) : Γ,∆ ⊢ ψ(p)

stm
: #

Γ ⊢ (µψ)
exp
: N

u
exp
: N ∈ Γ

Γ ⊢ u
exp
: N

Γ ⊢ σ
sub
: ∆

Γ ⊢ ·
sub
: ·

y
cov
: X ∈ Γ Γ ⊢ σ

sub
: ∆

Γ ⊢ (y/x, σ)
sub
: (x

cov
: X,∆)

Γ ⊢ E
exp
: N Γ ⊢ σ

sub
: ∆

Γ ⊢ (E/u, σ)
sub
: (u

exp
: N,∆)

Γ ⊢ S
stm
: #

u
exp
: N ∈ Γ Γ ⊢ C

cov
: N

Γ ⊢ u C
stm
: #

Γ ⊢ E
exp
: N Γ ⊢ C

cov
: N

Γ ⊢ E C
stm
: #

Figure 5: CU type system (negative fragment)

u
exp
: N ⇒ u

val
: ↓N u

cnt
: P ⇒ u

cov
: ↑P

Figure 6: CU type system (shift operators)

24

3.3 The shifts: modelling control

To extend CU with the shift operators (Figure 6), we simply include additional (co)pattern-typing rules:

u
exp
: N ⇒ u

val
: ↓N u

cnt
: P ⇒ u

cov
: ↑P

In Section 2.4, we interpreted the shift operators as modalities, which safely embed the lax notion of justified
proof into the more stringent notion of direct proof, and likewise justified refutation into direct refutation.
They now have a very concrete operational reading: an expression E

exp
: N can be suspended and treated as

a value E
val
: ↓N , while a continuation K

cnt
: P can be captured and treated as a covalue K

cov
: ↑P .

Example 17. Control operators such as callcc have long been associated with Curry-Howard interpretations
of classical logic (Griffin, 1990). In polarized logic, we can distinguish between values of type P , which do
not have control effects, and expressions of type ↑P , which can. For example, ordinarily callcc is typed using
Pierce’s Law, but in polarized logic we have the following derived rule:

Γ, u
cnt
: P ⊢ E

exp
: ↑P

Γ ⊢ callcc u.E
exp
: ↑P

where callcc u.E is syntactic sugar for µu.E u. Similarly, instead of double-negation elimination (which types
Parigot’s µ and Felleisen’s C) we have:

Γ, u
cnt
: P ⊢ S

stm
: #

Γ ⊢ µu.S
exp
: ↑P

As a special case of the latter, we can lift any value V
exp
: P to an expression µu.u V

exp
: ↑P (cf. the second

derivation in Example 7). �

In general, we can use expressions of type ↑P to model “possibly effectful” call-by-value terms. The usual
introduction and elimination rules of the lambda-calculus, which operate not only on values but on arbitrary
terms, can be recovered in CU as derived rules at shifted type. For example, we can give a pair-formation
rule:

Γ ⊢ E1

exp
: ↑P Γ ⊢ E2

exp
: ↑Q

Γ ⊢ (E1, E2)
exp
: ↑(P ⊗Q)

where (E1, E2) is syntactic sugar for the left-to-right evaluation:

(E1, E2) = µu.E1 (λp1.E2 (λp2.u (p1, p2)))

One may wonder how this analysis compares with Moggi’s notion of computational monad (Moggi, 1991).
Categorically, the relationship may be understood as that between a monad and an adjunction.14 In other
words, the shift operators decompose the monad as © = ↓↑. Operationally, we can think of the relationship
between expressions E

exp
: ↑P and values of monadic type V

val
: ↓↑P , the key difference being that V is a

suspended expression—it is passed to a continuation which may evaluate it arbitrarily many times, whereas
E has control over its own evaluation.

We can likewise use the shift operators to give a better encoding of lazy evaluation. As Filinski (1989)
observed (cf. §2.5.3), what are typically thought of as lazy sums (e.g., in Haskell) are emphatically not the
duals of strict products. Instead, what is usually meant is a form of “lazy pattern-matching”, where a
sum is eagerly reduced down to a tag indicating the correct branch, but no further. Filinski shows how to
simulate this behavior in a language similar to the negative fragment of CU, effectively by encoding sums as
expressions of type ¬n¬nMO¬n¬nN . But since “lazy” sums really combine lazy and eager evaluation, we can
give a more direct encoding using the shift operators. The type ↑(↓M ⊕ ↓N) can be read directly, as that of
an expression (↑) computing a tagged (⊕), suspended (↓) expression.15

14We have ↑⊣ ↓ in the partial order of Section 2.4, since ↑P ≤ N iff P ≤ ↓N .
15For similar reasons, ⊤ does not really correspond to the type () in Haskell, since it is possible to force evaluation of the

latter by pattern-matching. Instead, a better encoding is ↑1.

25

ML CU

V : τ V
val
: P

E : τ E
exp
: ↑P

τ1 ∗ τ2 P ⊗Q
unit 1

τ1 + τ2 P ⊕Q
void 0

τ → void ¬vP

τ1 → τ2 ¬v (P ⊗ ¬vQ)

Haskell CU

E : τ E
exp
: N

(τ1, τ2) NNM
() ↑1

Either τ1 τ2 ↑(↓N ⊕ ↓M)
Void ⊥

τ → Void ¬nN

τ1 → τ2 ¬nNOM

Figure 7: Polarity Pocket Dictionary® (for recreational use only!)

S S′

(λφ)([σ]p) [σ]φ(p) (µψ)([σ]p) [σ]ψ(p)
. .

[σ]t

[σ]v =

(

t (t/v) ∈ σ

v v /∈ dom(σ)

[σ]([σ′]p) = [[σ]σ′]p [σ]([σ′]p) = [[σ]σ′]p

[σ](λφ) = λp.[σ]φ(p) [σ](µψ) = µp.[σ]ψ(p)

[σ]· = · [σ](t/v, σ′) = ([σ]t/v, [σ]σ′)

[σ](K V) = ([σ]K [σ]V) [σ](E C) = ([σ]E [σ]C)

Figure 8: CU operational semantics

Summarizing these analyses, in Figure 7 we publish a “pocket dictionary”, which gives a rough trans-
lation from judgments and types of ML and Haskell to those of CU. These translations are provided only
for intuition, and do not capture all the properties of the source languages (e.g., the purity of Haskell).
Establishing a formal correspondence is far beyond the scope of this paper. We do postulate, though, that
the ML entries are fairly accurate.

3.4 Operational semantics and type safety

By adapting the proofs of the substitution and reduction principles in Section 2.2, we now give CU a
traditional small-step operational semantics.

Notation. We use t to stand for an arbitrary term of CU, i.e., a value V , continuation K, covalue C,
expression E, statement S, or substitution σ. Similarly, we use v to stand for an arbitrary variable x, x, u,
or u. We use t : J to stand for an arbitrary typing judgment, i.e., V

val
: P , K

cnt
: P , C

cov
: N , E

exp
: P , S

stm
: #,

or σ
sub
: ∆.

Given a substitution σ and term t, we let [σ]t stand for the usual simultaneous, capture-avoiding substi-
tution. [σ]t is defined in the obvious way (see Figure 8), but it is worth mentioning one of the higher-order
cases: applying σ to a continuation (λφ) builds a new map from patterns to statements, by post-composing
φ with σ, i.e., [σ](λφ) = λp.[σ]φ(p).

26

Lemma 20 (Substitution). If Γ,∆ ⊢ t : J and Γ ⊢ σ
sub
: ∆, then Γ ⊢ [σ]t : J .

Proof. Immediate by induction on the derivation of Γ,∆ ⊢ t : J . The proof is essentially identical to the
proof in Section 2.2, except that in the case where t = u V and u ∈ dom(σ) (or dually, t = u C and
u ∈ dom(σ)), we need not appeal to a separate induction hypothesis, but instead can directly apply the
typing rule internalizing the reduction principle.

The operational semantics can now be specified as a reduction relation S S′ on statements. Indeed, it
is exceptionally easy to describe:

(λφ)([σ]p) [σ]φ(p) (µψ)([σ]p) [σ]ψ(p)

Of course, our ability to state the reduction relation so concisely relies on the duality between the higher-
order representation of continuations and the explicit substitution notation for values (ditto for expressions
and covalues). Note that since φ and ψ are partial maps, these reductions can only be applied when φ(p)
and ψ(p) are defined.

Example 18. Recall the definitions of nc and not from Examples 13 and 14. Let u
cnt
: 2 be a “top-level”

boolean continuation. Then nc (not, u) evaluates to u t, as the following calculation verifies.

nc (not, u)
 not (t, λb1.not (f, λb2.xor ((b1, b2), u)))
 (λb1.not (f, λb2.xor ((b1, b2), u))) f

 not (f, λb2.xor ((f, b2), u))
 (λb2.xor ((f, b2), u)) t

 xor ((f, t), u)
 u t

�

That this example used a “top-level” continuation variable illustrates a slightly counterintuitive aspect of
the pure Curry-Howard interpretation of polarized logic: there are no closed, well-typed statements. Indeed,
this is due to the consistency of logic! For well-typed statements correspond to proofs of contradiction,
and a closed well-typed statement would be a proof of a contradiction from no assumptions. Although
not disastrous, this is somewhat inconvenient because it suggests we have to consider evaluation of open
statements for the semantics to be non-vacuous. However, a conceptually simpler alternative presents itself:
adding a single closed, well-typed statement. We call this done since it represents termination, and type it
as follows:

Γ ⊢ done
stm
: #

Of course, this rule is not “logical”—it makes the Curry-Howard interpretation inconsistent.16 But from
an operational perspective the rule is quite mundane. Indeed, since we interpret statements as effectful
computations, morally their definition should be open-ended, as it would be in a realistic programming
language. In Section 4 below we consider extending CU with additional effects—the statement done is
simply the most basic. We can now prove a (non-vacuous!) type safety theorem for evaluation of closed
statements.

Lemma 21 (Progress). If ⊢ S
stm
: # then either S = done or else there exists an S′ such that S S′.

Proof. By inversion on the typing derivation, either S = done (and we’re done!) or S = (λφ)([σ]p) or
S = (µψ)([σ]p). These two cases are entirely symmetric, so we only examine the former. Since S is well-

typed, there exists some P such that ⊢ (λφ)
cnt
: P and ⊢ [σ]p

val
: P . Inverting ⊢ [σ]p

val
: P , we establish that p

is a P -pattern, and inverting ⊢ (λφ)
cnt
: P we derive that φ(p) is defined. Hence (λφ)([σ]p) [σ]φ(p).

16The reader familiar with ludics may note the similarity between done and “daimon” (Girard, 2001). Girard introduced the
daimon rule to get around the problem of the “empty pivot”, essentially what we have just described.

27

X,Λ →c Θ,X
init

Λ →c Θ,A A,Λ →c Θ

Λ →c Θ
cut

A,A ∧ B,Λ →c Θ

A ∧ B,Λ →c Θ
∧L1

B,A ∧ B,Λ →c Θ

A ∧ B,Λ →c Θ
∧L2

Λ →c Θ, A ∧B,A Λ →c Θ, A ∧B,B

Λ →c Θ, A ∧B
∧R

A,A ∨B,Λ →c Θ B,A ∨B,Λ →c Θ

A ∨B,Λ →c Θ
∨L

Λ →c Θ, A ∨B,A

Λ →c Θ, A ∨B
∨R1

Λ →c Θ, A ∨B,B

Λ →c Θ, A ∨B
∨R2

¬A,Λ →c Θ, A

¬A,Λ →c Θ
¬L

A,Λ →c Θ,¬A

Λ →c Θ,¬A
¬R

Figure 9: Classical sequent calculus

Lemma 22 (Preservation). If Γ ⊢ S
stm
: # and S S′ then Γ ⊢ S

stm
: #.

Proof. By inversion on the reduction relation, we have either S = (λφ)([σ]p) [σ]φ(p) = S′ or S =
(µψ)([σ]p) [σ]ψ(p) = S′. Again these cases are entirely symmetric. Now we invert the typing derivation

Γ ⊢ (λφ)([σ]p)
stm
: # to obtain that for some P and ∆ such that ∆ ⇒ p

val
: P , we have Γ ⊢ σ

sub
: ∆ and

Γ,∆ ⊢ φ(p)
stm
: #. Then Γ ⊢ [σ]φ(p)

stm
: # holds by substitution.

Corollary 23 (Type safety). If S is a closed, well-typed statement, then either S = done, or S reduces to
a closed, well-typed statement.

3.5 Postlude: a computational interpretation of focusing completeness

In this section we make good on the promise of Section 2.5 by proving the focusing completeness theorem,
i.e., that any sequent provable in classical sequent is provable (after polarization) in polarized logic. In order
to better illustrate the completeness proof’s computational content, we will annotate derivations with terms
of CU. As an axiomatization of the sequent calculus we will use Kleene’s G3 presentation, given in Figure 9
(Kleene, 1952; Troelstra and Schwichtenberg, 1996). We omit the units, since they do not reveal anything
not already illustrated by conjunction and disjunction.

3.5.1 Preliminaries

To state the focusing completeness theorem in full generality, we will have to extend our notion of valid
polarized contexts. When giving the rules for polarized logic, we disallowed contexts containing hypotheses
P triv or N absurd except where P and N are atomic. We now relax this restriction.

Definition 24. An inductive context is either an ordinary context, or else an inductive context together with
a non-primitive hypothesis P triv or N absurd. The meaning of a hypothetical judgment under an inductive
context is expanded as follows: Γ, P triv ⊢ J iff for all ∆ ⇒ P triv, we have Γ,∆ ⊢ J (and analogously for
Γ, N absurd ⊢ J).

This convention is extended to typing judgments by writing P val and N cov instead of P triv and
N absurd, and allowing “inductive terms”.

Definition 25. An inductive term is either an ordinary term, or else a partial map from (co)patterns to
inductive terms. The meaning of a typing judgment under an inductive context is expanded as follows:
Γ, P val ⊢ t : J iff for all ∆ ⇒ p

val
: P , we have Γ,∆ ⊢ t(p) : J (and analogously for Γ, N cov ⊢ t : J).

28

Proposition 26. If Γ, P val ⊢ S
stm
: # then Γ ⊢ (λp.S(p))

cnt
: P .

Now, we adapt the sequent notation defined in Section 2.5 to CU. For any inductive context Γ, the pair
of contexts (Λ,Θ) is constructed by placing hypotheses x

val
: X , u

cnt
: P , and P val in Λ, and hypotheses x

val
: X,

u
exp
: N , and N cov in Θ. We define alternative syntax for the typing judgments:

Γ ⊢ V
val
: P ↔ V : (Λ → Θ | P)

Γ ⊢ K
cnt
: P ↔ K : (P | Λ → Θ)

Γ ⊢ E
exp
: N ↔ E : (Λ → Θ | N)

Γ ⊢ C
cov
: N ↔ C : (N | Λ → Θ)

Γ ⊢ S
stm
: # ↔ S : (Λ → Θ)

We likewise extend the erasure operator |−| (which converts a polarized formula to an unpolarized formula)
to labelled hypotheses as follows:

|x
val
: X | = X |u

cnt
: P | = |P | |P val| = |P |

|x
val
: X| = X |u

exp
: N | = |N | |N cov| = |N |

Finally, we call terms of CU pure if they do not use done. Clearly, we want to restrict our attention to
pure terms in the proof of completeness.

3.5.2 Completeness

Theorem 27 (Focusing Completeness). If |Λ| →c |Θ| then there exists a pure S such that S : (Λ → Θ).

Proof. By induction on the classical derivation, with a side induction on the formulas in Λ and Θ. In
all we have to consider each of the ten rules with either positive or negative polarization of the principal
connective/atom/cut formula (i.e., 20 cases), plus the possible occurrence of the shift operators on either side
of the polarized sequent (i.e., four cases). Fortunately, the positive and negative cases are entirely symmetric,
and indeed all cases are simply routine computations. Below we illustrate a few of the positive cases.

Case: (init)

Take S = u x : (x
val
: X,Λ → Θ, u

cnt
: X).

Case: (cut)
By the induction hypothesis we have:

S1 : (Λ → Θ, u
cnt
: P) and S2 : (P val,Λ → Θ)

Take S = [(λp.S2(p))/u]S1. By Proposition 26 and the substitution lemma, we have S : (Λ → Θ).

Case: (∧R)
By the i.h. we have:

S1 : (Λ → Θ, u
cnt
: P ⊗Q, u1

cnt
: P) and S2 : (Λ → Θ, u

cnt
: P ⊗Q, u2

cnt
: Q)

We define S by:

S = [(λp1.[(λp2.u (p1, p2))/u2]S2)/u1]S1

The computational gloss of this proof term: “Begin by executing S1, until possibly a call to u1 is
made—if so, remember the argument p1 and execute S2 until (possibly) a call to u2 is made with

argument p2. Now we have p1

val
: P and p2

val
: Q, so we can finish by throwing (p1, p2) to u”. Note the

choice of left-to-right evaluation order here is arbitrary. We could as well have taken

S = [(λp2.[(λp1.u (p1, p2))/u1]S1)/u2]S2

29

Case: (¬R)
By the i.h., we have S1 : (P val,Λ → Θ, u

cnt
: ¬vP). Then take S = u (λp.S1(p)).

Case: (∨L)
We have S1 : (P val, P ⊕Q val,Λ → Θ) and S2 : (Q val, P ⊕Q val,Λ → Θ). We define S inductively on
(P ⊕Q)-patterns, by S(inl(p1)) = S1(p1)(inl(p1)) and S(inr(p2)) = S2(p2)(inr(p2)).

Case: (↓N)
Suppose we have |Λ| →c |Θ|, |↓N | (and know nothing about the last rule applied). Then by definition
|Λ| →c |Θ|, |N |, and by the i.h. there exists a S1 : (Λ → Θ, N cov). Therefore we have u (µp.S1(p)) :
(Λ → Θ, u

cnt
: ↓N).

Letting ⊢c stand for classical truth, the following are immediate corollaries of focusing completeness.

Corollary 28 (“Glivenko’s Theorem”). if ⊢c |P | then there is a pure V such that ⊢ V
val
: ↓↑P .

Proof. Let V = µu.S, where S : (· → u
cnt
: P).

Corollary 29 (Dual intuitionistic truth = classical truth). if ⊢c |N | then there is a pure E such that
⊢ E

exp
: N .

Proof. Let E = µp.S(p), where S : (· → N cov).

4 Extending the language: preliminary results

We have derived the language CU through a Curry-Howard interpretation of polarized logic, and illustrated
some of its expressive power to encode strict and lazy evaluation at the level of types. From this logical core,
the language is amenable to extension in several different directions. Roughly, these classify as introducing
new effects or new types. We give a quick sketch of both possibilities in order to point the way forward,
although a thorough examination is not possible here.

Non-termination. Adding recursion is straightforward. For example, the following typing rule and
reduction rule allow building recursive expressions:

Γ, u
exp
: N ⊢ E

exp
: N

Γ ⊢ fix u.E
exp
: N (fix u.E) C ([(fix u.E)/u]E) C

Non-determinism. We can add simple non-deterministic evaluation:

Γ ⊢ S1

stm
: # Γ ⊢ S2

stm
: #

Γ ⊢ S1 ‖ S2

stm
: #

S1 ‖ S2 S1

S1 ‖ S2 S2

Both of these extensions introduce new effects into the language without breaking its essential properties.
In particular, we can rely on the fact that these kinds of extensions do not change the structure of values
and covalues (although they introduce new expressions and statements that can be suspended within values
and covalues). Thus type safety extends in a modular way: the proof of progress requires one additional
case for each new typing rule, and the proof of preservation one additional case for each new reduction rule.

Recursive types. Perhaps surprisingly, recursive types can be added with just a single pattern-typing
rule:

∆ ⇒ p
val
: [(rec X.P)/X]P

∆ ⇒ fold(p)
val
: rec X.P

Alternately, we can give patterns for specific recursive datatypes, for example natural numbers or infinite
boolean streams:

30

· ⇒ z
val
: N

∆ ⇒ p
val
: N

∆ ⇒ s(p)
val
: N

u
exp
: ↑Stream ⇒ cons(t, u)

val
: Stream u

exp
: ↑Stream ⇒ cons(f, u)

val
: Stream

Since the proof of type safety is parametric in the pattern-typing judgment, we do not even have to check
any additional cases! However, we can no longer rely on there being only finitely many patterns of any type.
Type safety indeed did not rely on this fact. But it raises a question about how to interpret the higher-order
rules,17 which we will not attempt to answer here.

Example 19. We define an expression bit
exp
: ↑2 computing a non-deterministic boolean, and then bits

exp
: ↑Stream

as an infinite lazy stream of booleans:

bit = µu.(u t) ‖ (u f)
bits = fix u.µu.bit (λb.u cons(b, u))

�

Union and intersection types. As described in the introduction, part of the motivation for study-
ing evaluation order from a logical perspective was to explain what we call operationally-sensitive typing
phenomena, the differing behavior of unions and intersections under call-by-value and call-by-name evalu-
ation. For example, Davies and Pfenning (2000) discovered that intersection introduction requires a value
restriction under call-by-value with effects, constructing a counterexample to type safety analogous to the
original bug in the implementation of ML polymorphism. They also discovered that the standard subtyping
distributivity rule (A→ B)∩(A→ C) ≤ A→ (B∩C) (Barendregt et al., 1983) was unsound in that setting.
Although union and intersection types are beyond the scope of this paper, our preliminary studies suggest
that operationally-sensitive typing phenomena do indeed have a logical explanation. To give a preview of
the results, just like products and sums, intersections and unions come in two polarities—one positive, one
negative—and are defined purely through their (co)pattern-typing rules. Then, as in Section 3.3, we can
attempt to derive rules for expression-typing at shifted type. We find that the usual union introduction rules
are derivable:

Γ ⊢ E
exp
: ↑P

Γ ⊢ E
exp
: ↑(P ∪Q)

Γ ⊢ E
exp
: ↑Q

Γ ⊢ E
exp
: ↑(P ∪Q)

But the unrestricted intersection introduction rule is not:

Γ ⊢ E
exp
: ↑P Γ ⊢ E

exp
: ↑Q

Γ ⊢ E
exp
: ↑(P ∩Q)

??

Likewise, we define subtyping by generalizing the identity principle: P is a subtype of Q if by any hypothesis
u

cnt
: Q can be transformed by the identity coercion into a continuation of type P . Again, using this derived

notion of subtyping we can explain the failure of unsound distributivity laws such as ↑P ∩ ↑Q ≤ ↑(P ∩Q),
while simultaneously validating sound principles such as ¬vP ∩ ¬vQ ≤ ¬v (P ∪Q). Polarity is important here!
As duals to these principles, we can derive ↓N ∩ ↓M ≤ ↓(N ∩M) but not ¬nN ∩ ¬nM ≤ ¬n (N ∪M).

5 Related Work

This work builds on ideas developed by many different people in different areas of research. We present a
brief survey below.

Refinement types and effects. Refinement types are practically-motivated extensions to type systems
for existing languages, used to capture more program invariants (Freeman and Pfenning, 1991). Although
this research drew from very old theoretical foundations on intersection types (Barendregt et al., 1983),
those foundations were found to be shaky in this more operational setting: Davies and Pfenning (2000)

17For example, the derived type-checking rule for N-continuations is a variant of the ω-rule (Buchholz et al., 1981).

31

found examples showing the necessity of a value restriction on intersection introduction, as well as the
unsoundness of the standard subtyping distributivity rule for function types. The design of a refinement
system with union types (Dunfield and Pfenning, 2004) uncovered further dissonance with prior theoretical
studies (Barbanera et al., 1995).

Duality of computation. Beginning with Filinski’s master’s thesis (Filinski, 1989), a line of work has
explored a duality between call-by-value and call-by-name evaluation in the presence of first-class continua-
tions. Filinski was inspired by categorical duality; logical studies of this duality have been done largely in the
setting of classical logic, particularly based upon the λµ-calculus (Parigot, 1992). For example, Curien and
Herbelin (2000) define a programming language with control operators as a Curry-Howard interpretation of a
sequent calculus for implicational classical logic, which Wadler (2003) extends to a “dual calculus” for propo-
sitional classical logic including conjunction, disjunction, negation, and implication defined by De Morgan
translation. Both papers analyze the duality between call-by-value and call-by-name as one of alternative
cut-reduction strategies—without explicitly using polarity to encode these strategies at the level of types.
On the other hand, Curien and Herbelin (2000) come very close to defining dual focusing calculi as “well-
behaved subsyntaxes” (cf. §5), as does Shan (2005) in an extension of Wadler’s calculus. In even more recent
work, Dyckhoff and Lengrand (2006) define a positive focusing system and use the implication fragment to
encode call-by-value lambda calculus.

From a domain-theoretic perspective, Streicher and Reus (1998) give an interpretation of call-by-name
based on negative domains and continuation semantics, an extension of earlier work with Lafont et al. (1993),
which was itself inspired by Girard’s polarized deconstruction of classical logic (see below). More “unified”
(both positive and negative) perspectives are provided by Selinger’s control categories, as well as Paul-Blain
Levy’s call-by-push-value language (Selinger, 2001; Levy, 2001). The latter maintains separate syntactic
categories of “value types” and “computation types”, which may be seen as a polarity distinction—a similar
distinction has also been proposed by Filinski (2007). Recently, Levy (2006) defined a “jumbo” λ-calculus
with pattern-matching constructs—essentially for their inversion properties—arguing that this is necessary
to obtain the right type isomorphisms.

Polarity and focusing. The discovery of linear logic (Girard, 1987) and its crisp symmetries led to some
early attempts at explaining strict vs. lazy evaluation within linear logic, for example by Abramsky (1993).
Focusing (Andreoli, 1992) greatly improved the understanding of these symmetries, and sparked interest in
the idea of polarity as a way of taming misbehaved logics (Girard, 1991, 1993). It was reconstructed in the
“colour protocol” of Danos et al. (1997) for studying normalization of proofs, and used by Watkins et al.
(2002) to define a dependent type theory with only canonical forms (and hence no need for βη conversion
rules). Recently the theory of polarity has been developed in greater depth, both in ludics (Girard, 2001)
and in Olivier Laurent’s dissertation (Laurent, 2002). Laurent (2005) pursues an analysis in various ways
technically similar to ours, defining dual translations of classical logic into polarized linear logic, and then
studying the different type isomorphisms induced by η-expansion in a purely logical setting.

Constructive negation and dual intuitionistic logic. As mentioned in Section 2.3, the notion
of constructive refutation is due to Nelson (1949). The system defined in that paper (via a realizability
interpretation) seems to correspond to the fragment of polarized logic with only the judgments triv and
absurd, and negation defined as the (−)⊥ connective. Dual intuitionistic logic (corresponding to the negative
fragment of polarized logic) was first studied by Czermak (1977) and Goodman (1981) (the latter called it
“anti-intuitionistic” logic). Again inspired by Girard’s LU, Bellin and Biasi (2004) present a polarized logic
combining intuitionistic and dual intuitionistic logic. Their analysis has a similar philosophical motivation as
ours, viewing the two halves of the system as corresponding to dual, verificationist and pragmatist meaning-
theories.

The logic of logic. While we have traced our judgmental reconstruction of polarity to Dummett’s
especially insightful account in “The Logical Basis of Metaphysics”, many others have considered similar
questions about the meaning and the justification of the logical laws. We gave some historical context for
Dummett’s analysis in Section 2.1, particularly his debt to Prawitz. Prawitz’s inversion principle has seen
a burst of renewed interest, following Jan von Plato’s analysis of natural deduction and the framework of
“general elimination rules” (Plato, 2001). While Dummett bases his notion of proof-theoretic justification on

32

Prawitz’s, we saw that a major difference was his hereditary definition of canonical proof. This is what makes
Dummett’s analysis so closely related to focusing and pattern-matching. Coquand (1992) also draws this
explicit connection to Dummett’s work in the conclusion to a short paper on pattern-matching in dependent
type theory, writing (without further elaboration), “From a proof-theoretic viewpoint, our treatment can be
characterized as fixing the meaning of a logical constant by its introduction rules.”

Of course another famous investigation of the justification of the logical laws is Martin-Löf’s 1983 Siena
Lectures (Martin-Löf, 1996), while Girard’s recent monograph “Locus Solum” is an almost infamous one
(Girard, 2001). Though we have profited greatly from the ideas developed in both these investigations, we
have gone back to Dummett’s not only because it was an early exposition of polarity, but so as to suggest
his work as a surprising link between them.

Acknowledgments

This work would not have been possible without the many thoughtful suggestions and criticisms of my
advisor Frank Pfenning. I have also greatly benefited from discussions with Steve Awodey, Peter Hancock,
Bob Harper, Neel Krishnaswami, Peter Lee, William Lovas, Paul-André Melliès, Jason Reed, Rob Simmons,
and Kevin Watkins. Thierry Coquand’s paper pointed me towards Dummett’s lectures, and he also suggested
contacting Peter Hancock, who kindly provided me information about his work with Per Martin-Löf, as well
as a copy of (Martin-Löf, 1976). Peter Dybjer also tracked down and mailed me a copy of (Hancock and
Martin-Löf, 1975). Finally, I would like to gratefully acknowledge the back-breaking labor of the anonymous
referees, in helping me to improve previous versions of this paper.

References

Abramsky, S., 1993. Computational interpretations of linear logic. Theoretical Computer Science 111 (1–2), 3–57.

Andreoli, J.-M., 1992. Logic programming with focusing proofs in linear logic. Journal of Logic and Computation
2 (3), 297–347.

Andreoli, J.-M., 2001. Focussing and proof construction. Annals of Pure and Applied Logic 107 (1), 131–163.

Barbanera, F., Dezani-Ciancaglini, M., De’Liguoro, U., 1995. Intersection and union types: syntax and semantics.
Information and Compution 119 (2), 202–230.

Barendregt, H., Coppo, M., Dezani-Ciancaglini, M., 1983. A filter lambda model and the completeness of type
assignment. The Journal of Symbolic Logic 48 (4), 931–940.

Bellin, G., Biasi, C., 2004. Towards a logic for pragmatics: Assertions and conjectures. Journal of Logic and Compu-
tation 14 (4), 473–506.

Buchholz, W., Feferman, S., Pohlers, W., Sieg, W., 1981. Iterated Inductive Definitions and Subsystems of Analysis:
Recent Proof-Theoretical Studies. Springer-Verlag.

Coquand, T., 1992. Pattern matching with dependent types. In: Proceedings of the Workshop on Types for Proofs
and Programs. B̊astad, Sweden, pp. 71–83.

Curien, P.-L., Herbelin, H., 2000. The duality of computation. In: ICFP ’00: Proceedings of the SIGPLAN Interna-
tional Conference on Functional Programming. pp. 233–243.

Czermak, J., 1977. A remark on Gentzen’s calculus of sequents. Notre Dame Journal of Formal Logic 18, 471–474.

Danos, V., Joinet, J.-B., Schellinx, H., 1997. A new deconstructive logic: Linear logic. The Journal of Symbolic Logic
62 (3), 755–807.

Davies, R., Pfenning, F., 2000. Intersection types and computational effects. In: ICFP ’00: Proceedings of the
SIGPLAN International Conference on Functional Programming. pp. 198–208.

33

Dummett, M., 1991. The Logical Basis of Metaphysics. The William James Lectures, 1976. Harvard University Press,
Cambridge, Massachusetts.

Dunfield, J., Pfenning, F., 2004. Tridirectional typechecking. In: POPL ’04: Proceedings of SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 281–292.

Dyckhoff, R., Lengrand, S., 2006. LJQ: A strongly focused calculus for intuitionistic logic. In: Proceedings of the
Second Conference on Computability in Europe.

Filinski, A., 1989. Declarative continuations and categorical duality. Master’s thesis, University of Copenhagen,
Computer Science Department.

Filinski, A., 2007. On the relations between monadic semantics. Theoretical Computer Science 375 (1-3), 41–75.

Freeman, T., Pfenning, F., 1991. Refinement types for ML. In: PLDI ’91: Proceedings of the SIGPLAN Conference
on Programming Language Design and Implementation. pp. 268–277.

Gentzen, G., 1935. Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210, 405–431,
English translation in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland,
1969.

Girard, J.-Y., 1987. Linear logic. Theoretical Computer Science 50 (1), 1–101.

Girard, J.-Y., 1991. A new constructive logic: Classical logic. Mathematical Structures in Computer Science 1,
255–296.

Girard, J.-Y., 1993. On the unity of logic. Annals of pure and applied logic 59 (3), 201–217.

Girard, J.-Y., 2001. Locus solum: From the rules of logic to the logic of rules. Mathematical Structures in Computer
Science 11 (3), 301–506.

Goodman, N. D., 1981. The logic of contradiction. Zeitschrift für mathematische Logik und Grundlagen der Mathe-
matik 27 (2), 119–126.

Griffin, T. G., 1990. The formulae-as-types notion of control. In: POPL ’90: Proceedings of the SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 47–57.

Hancock, P., Martin-Löf, P., 1975. Syntax and semantics of the language of primitive recursive functions. Tech. Rep. 3,
University of Stockholm, Stockholm, Sweden.

Harper, B., Lillibridge, M., 1991. ML with callcc is unsound. Post to TYPES mailing list, July 8, 1991.

Heyting, A., 1974. Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie. Springer, Berlin.

Kleene, S. C., 1952. Introduction to Metamathematics. Van Nostrand, Princeton, NJ.

Kolmogorov, A. N., 1932. Zur Deutung der intuitionistischen Logik. Mathematischen Zeitschrift 35, 58–65.

Lafont, Y., Reus, B., Streicher, T., 1993. Continuation semantics or expressing implication by negation. Tech. Rep.
93-21, University of Munich.

Laurent, O., Mar. 2002. Etude de la polarisation en logique. Thèse de doctorat, Université Aix-Marseille II.

Laurent, O., Oct. 2005. Classical isomorphisms of types. Mathematical Structures in Computer Science 15 (5), 969–
1004.

Levy, P. B., 2001. Call-by-push-value. Ph.D. thesis, Queen Mary, University of London.

Levy, P. B., 2006. Jumbo λ-calculus. In: Proceedings of the 33rd International Colloquium on Automata, Languages
and Programming, Venice, 2006. Vol. 4052 of Lecture Notes in Computer Science.

Martin-Löf, P., 1971. Hauptsatz for the intuitionistic theory of iterated inductive definitions. In: Fenstad, J. E. (Ed.),
Proceedings of the Second Scandinavian Logic Symposium. North Holland, Amsterdam, pp. 179–216.

34

Martin-Löf, P., 1976. Letter to Michael Dummett, dated 5 March, 1976, including lecture notes transcribed by Peter
Hancock. Copy received from Peter Hancock.

Martin-Löf, P., 1996. On the meanings of the logical constants and the justifications of the logical laws. Nordic Journal
of Philosophical Logic 1 (1), 11–60.

Milner, R., Tofte, M., Harper, R., MacQueen, D., 1997. The Definition of Standard ML, Revised edition. MIT Press.

Moggi, E., 1991. Notions of computation and monads. Information and Compution 93 (1), 55–92.

Nelson, D., 1949. Constructible falsity. Journal of Symbolic Logic 14 (1), 16–26.

Parigot, M., 1992. λµ-calculus: An algorithmic interpretation of classical natural deduction. In: LPAR ’92: Proceed-
ings of the International Conference on Logic Programming and Automated Reasoning. pp. 190–201.

Pfenning, F., Davies, R., 2001. A judgmental reconstruction of modal logic. Mathematical Structures in Computer
Science 11 (4), 511–540.

Plato, J. v., 2001. Natural deduction with general elimination rules. Archive for Mathematical Logic 40 (7).

Plotkin, G. D., 1975. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science 1, 125–159.

Prawitz, D., 1974. On the idea of a general proof theory. Synthese 27, 63–77.

Reynolds, J. C., 1972. Definitional interpreters for higher-order programming languages. In: ACM ’72: Proceedings
of the ACM annual conference. pp. 717–740.

Selinger, P., 2001. Control categories and duality: on the categorical semantics of the lambda-mu calculus. Mathe-
matical Structures in Computer Science 11 (2), 207–260.

Shan, C., 2005. A computational interpretation of classical S4 modal logic. In: IMLA ’05: Intuitionistic Modal Logics
and Applications Workshop.

Streicher, T., Reus, B., Nov. 1998. Classical logic, continuation semantics and abstract machines. Journal of Functional
Programming 8 (6), 543–572.

Troelstra, A. S., Schwichtenberg, H., 1996. Basic Proof Theory. Vol. Cambridge Tracts in Theoretical Computer
Science 43. Cambridge University Press.

Wadler, P., 2003. Call-by-value is dual to call-by-name. In: ICFP ’03: Proceedings of the SIGPLAN International
Conference on Functional Programming. pp. 189–201.

Watkins, K., Cervesato, I., Pfenning, F., Walker, D., 2002. A concurrent logical framework I: Judgments and prop-
erties. Tech. Rep. CMU-CS-02-101, Department of Computer Science, Carnegie Mellon University, revised May
2003.

Wittgenstein, L., 1974. Philosophical Grammar. Blackwell, Oxford.

Wright, A. K., 1995. Simple imperative polymorphism. Lisp and Symbolic Computation 8 (4), 343–355.

35

