
Balanced polymorphism
and linear lambda calculus

Noam Zeilberger

MSR-Inria Joint Centre

TYPES 2015
Tallinn, 18 May 2015

1 / 30

a pearl theorem

2 / 30

Linear lambda calculus as an extremal case of parametricity:

λx .x(λy .y) : ((α(α)(β)(β
λx .λy .x(y) : (α(β)((α(β)

λx .λy .y(x(λz.z)) : ((α(α)(β)(((β(γ)(γ)
λx .λy .x(λz.z(y)) : (((α(β)(β)(γ)((α(γ)

... :
...

Every linear lambda term is (simply-)typable, and its
(βη-)normal form is uniquely identified by its principal type.

3 / 30

Grigori Mints
7 June 1939 – 29 May 2014

Mairson asserts this as a “pearl theorem”.
I believe that the first proof is due to Mints.
I Harry G. Mairson.

Linear lambda calculus and PTIME-completeness. JFP, 14:6 (2004).
I Grigorii E. Mints. Closed categories and the theory of proofs. Zapiski

Nauchnykh Seminarov LOMI im. V.A. Steklova AN SSSR, 68 (1977).
Translation in Journal of Soviet Mathematics, 15 (1981), republished in
Mints, Selected Papers in Proof Theory, Bibliopolis (1992).

4 / 30

Mints’ key ideas:
1. The principal type of a linear lambda term is balanced:

λx .x(λy .y) : ((α(•α)(β)(•β
λx .λy .x(y) : (•α(β)((α(•β)

λx .λy .y(x(λz.z)) : ((α(•α)(β)(((•β(γ)(•γ)
λx .λy .x(λz.z(y)) : (((•α(β)(•β)(γ)((α(•γ)

2. Any balanced type (more generally, any balanced typing
sequent) has at most one inhabitant up to βη.

Proof by induction on length of terms.

5 / 30

Mints’ proof is not that complicated, but a pearl theorem
deserves a “pearl proof”, and balanced polymorphism is a
recurring pattern...

Polymorphic CPS typing:

λk .k (t) : ∀R .(A → R)→ •R

Semantics of Separation Logic:

w |= φ ∗ ψ iff ∃w1,w2. (w = •w1 ~ •w2) ∧ (w1 |= φ) ∧ (w2 |= ψ)

w |= φ −∗ τ iff ∀w′. (•w′ |= φ) ⊃ (w′ ~ w |= τ)

Ends and coends in category theory.

6 / 30

I will describe two ways of understanding the pearl theorem:
1. as a simple bijection between string diagrams for linear

normal forms and provable balanced sequents, and
2. as a simple bidirectional type inference algorithm.

But first some background...

7 / 30

a graphical language for (neutral/normal) linear lambda terms

8 / 30

Described in a recent paper:
I Noam Zeilberger and Alain Giorgetti. A correspondence between rooted planar maps and normal planar

lambda terms. To appear in Logical Methods in Computer Science.

A rational reconstruction of “lambda-graphs with back-pointers”,
and a coloring protocol for neutral and normal terms.

9 / 30

From reflexive objects to lambda-graphs.

Dana Scott (1980): pure lambda calculus can be modelled by a
reflexive object in a ccc: an object u and morphisms

u
A // uu

L
oo

such that the L ; A = iduu .

Question: what is a model of pure linear lambda calculus?

10 / 30

I A monoidal category is a category C equipped with a
tensor product and unit operation

• : C × C → C I : 1→ C

associative and unital up to coherent isomorphism.
I It is closed if it is also equipped with operations
\ : Cop

× C → C and / : C × Cop
→ C right adjoint to the

tensor product in each component:

C(y , x \ z) � C(x • y , z) � C(x , z / y)

I It is symmetric if there is a family of isomorphisms

γx ,y : x • y ∼
→ y • x

involutive in the sense that (γx ,y ;γy ,x) = idx•y for all
x , y ∈ C, and which satisfy a few additional equations.

11 / 30

In a smcc, left and right residuals are isomorphic, but let us
nonetheless distinguish them and give an explicit name

σx ,y : x \ y ∼
→ y / x

to the isomorphism.

Definition

A linear reflexive object in a smcc C is an object u ∈ C
equipped with a pair of morphisms

u \ u L // u A // u / u

such that L ; A = σu,u.

12 / 30

Idea: recover lambda-graphs by considering a linear reflexive
object in a compact closed category and applying the
machinery of string diagrams.

13 / 30

Recall that any compact closed category has left and right
residuals defined by x \ y def

= ∗x • y and y / x def
= y • x∗.

The definition of lro translates into the following components in
the graphical language of compact closed categories:

∗u • u L // u { L u A // u • u∗ { A

L ; A = σu,u {
L

A

=

14 / 30

Annotating wires with input/output terms:

x t

λx.t

t

ut(u)

x t

(λx.t)(u) u

=

x t

t[u/x] u

Some examples:

x

λy.yx

y

yx

u

v

w
wv

λw.wv

(λw.wv)u

λv.(λw.wv)u

= v

uv

λv.uv

u

15 / 30

A coloring protocol for neutral and normal terms

Recall the standard definition of neutral and (β-)normal terms:
I Any variable x is neutral.
I If t is neutral and u is normal then t(u) is neutral.
I If t is neutral then t is normal.
I If t is normal then λx .t is normal.

Frank Pfenning (TYPES 1993) gave an elegant reformulation of
neutral and normal terms as a refinement type signature.
I Frank Pfenning. Refinement Types for Logical Frameworks. In Informal Proceedings of the Workshop on

Types for Proofs and Programs (ed. Herman Geuvers), 285–299, Nijmegen, The Netherlands, May 1993.

16 / 30

Reformulating Pfenning’s reformulation, we introduce the
following refinement of the notion of linear reflexive object:

Definition

A linear reflexive pair in a smcc D is a pair of objects
B ,R ∈ D equipped with a quadruple of morphisms

B \ R ` // R
c // B
s
oo

a // B / R

such that s; c = idB and `; c; a = (idB \ c); σb ,b ; (idB / c).

17 / 30

x t

λx.t

t

t

t

t

t

t(u) u

tx

u(λx.t)(u)

=

x t

ut[u/x]

t

t

=

t

t

18 / 30

Any neutral or normal linear term (with i free variables) can be
given a colored string diagram of the form

t

π

xi x1· · ·
···

or

t

π

xi x1· · ·
···

which moreover is free of c-nodes (= no red boxes).

λy.y(x(λz.z))

x
z

λz.z
x(λz.z)

y

y(x(λz.z))

λy.x(λz.zy)

x

z

λz.zy

zy
y

x(λz.zy)

y

19 / 30

relating normal linear terms and balanced principal types

20 / 30

Reverse the orientation of blue wires

x t

λx.t

↔ �

A B

A� B

t

t(u) u

↔ (

A(B

B A

and replace each blue box (s-node) by a distinct type variable...

21 / 30

x

y

yx

λy.yx

↔

�

β

(α

α

α(β

(α(β)� β

22 / 30

λy.y(x(λz.z))

x
z

λz.z
x(λz.z)

y

y(x(λz.z))

↔

�

γ

(β

(�

α

(α� α)(β

(β(γ)� γ

α� α

β(γ

23 / 30

λy.x(λz.zy)

x

z

λz.zy

zy
y

x(λz.zy)

y

↔

�

γ

(

(

�

β

α� γ

((α(β)� β)(γ

α(β

(α(β)� β
α

α

24 / 30

bidirectional type inference

25 / 30

t

π

xi x1· · ·
···

↔

A

π∗

Ai A1· · ·
···

t

π

xi x1· · ·
···

↔

A

π∗

Ai A1· · ·
···

26 / 30

Two moded typing judgments:

Γ⇐ R ⇐ A checking against A , R synthesizes context Γ
Γ⇐ N ⇒ A N synthesizes type A and context Γ

Well-moded inference rules:

x : A ⇐ x ⇐ A
Γ⇐ R ⇐ A (B ∆⇐ N ⇒ A

Γ,∆⇐ R(N)⇐ B

Γ⇐ R ⇐ α α fresh
Γ⇐ R ⇒ α

x : A , Γ⇐ N ⇒ B
Γ⇐ λx .N ⇒ A (B

27 / 30

This is just dual to standard bidirectional type checking!

Γ⇐ R ⇐ A ↔ Γ⇒ R ⇒ A

Γ⇐ N ⇒ A ↔ Γ⇒ N ⇐ A

28 / 30

todo list

29 / 30

I Formal meaning of “reverse the blue arrows”
I Understanding normalization and type annotations
I Pure lambda calculus and intersection types

30 / 30

	a pearl theorem
	a graphical language for (neutral/normal) linear lambda terms
	relating normal linear terms and balanced principal types
	bidirectional type inference
	todo list

