
Parsing as a liing problem and the
Chomsky-Schützenberger representation theorem

Journée GT DAAL
EPITA Kremlin-Bicêtre

21 April 2023

*Joint work with Paul-André Melliès, in proceedings of MFPS 2022.

h�ps://doi.org/10.46298/en�cs.10508

(long version in prepara�on)

Noam Zeilberger*

g

f

ed

c

b

a

a₀

a₁
a₂

a₃

c₁

c₂

f₁

b₀
c₀

d₀ e₀

g₀

f₀

1u

2u

2d
3u

3d

4u

4d

5u

5d

6u
6d

7u

7d

1d

1

A personal timeline, for context

2013-2016: we wrote a series of papers on type systems as functors.
Our original motivation was to better understand not just type systems
but other deductive systems as well (e.g., separation logic).

2017: we started thinking about context-free grammars and parsing
2018-2022: kept thinking...

24.04.2022: "how about we try to analyze the C-S rep thm?"
two weeks later: wow, that was an interesting theorem!

2

The C-S representation theorem

Classical statement: every CF language is the homomorphic image
of the intersection of a Dyck language with a regular language.

Some reasons why the theorem is interesting:

1. implicitly uses closure of CFLs under intersection with regular langs
2. proof relies on ability to represent derivation trees as words
3. says that Dyck languages are in some sense "universal" CFLs

3

A surprising adjunction

We found that at the heart of the C-S representation theorem is an
adjunction between categories and multicategories:

CatMultiCat
C[-]

W[-]

⊤

This elementary* adjunction transformed our perspective on CFGs.
For reasons to be clear we call it the contour / splicing adjunction.

*but seemingly previously unnoticed!

4

(What is a multicategory?)

Like a category, but morphisms can have multiple inputs f : A1,...,An → B

Typical examples:
- Vect, the multicategory of vector spaces and multilinear maps
- a free multicategory whose n-ary operations f(x1,...,xn) are symbolic
expressions in n variables

Multicategories are also known as (colored) operads, and I will adopt
that terminology (which we use in the MFPS paper) from now on...

5

c

c : R

g

What is an operad, a bit more formally

f
f

g

c

f∘(c,g,idG) : Y,P,G → Yf∘₀c : B,G → Y

f

f : R,B,G → Y g : Y,P → B
idG : G → G

set of operations

identity
operation

partial / parallel
composition

c + associativity
&

unitality axioms

set of colors
+

+

+

6

The operad of spliced words

Consider the operad W[Σ] with a single color, with n-ary operations
given by sequences of n+1 words w₀-w₁-...-wₙ over Σ, with
composition given by "splicing into the gaps":

(ab-ca-ra)∘(ra,dab) = abracadabra

and with identity operation ε-ε.

7

A functorial view of context-free grammars

Building on the philosophy of type refinement systems, our starting
point was the idea that any classical CFG can be represented by a
functor of operads p : 𝔻 → W[Σ] from a freely generated operad
𝔻 into the operad of spliced words W[Σ]...

8

Representing CFGs as functors of operads: example

𝔻

W[Σ]

1 : S → NP VP
2 : NP → mom
3 : NP → tom
4 : VP → loves NP

S

VPNP

NP NP VP

NP

1 2 3 4

ε-␣-ε mom tom loves␣-ε

↦ ↦ ↦ ↦ ↦

S

VPNP

NP

1

3

2

4

ε-␣-ε ∘ (tom, loves␣-ε∘mom)
= tom␣loves␣mom

(derivations)

(spliced words)

9

1. show how this functorial viewpoint may be naturally generalized to
define CFGs over any category.

2. motivate why this viewpoint and this generalization are useful.

3. explain how both word + tree automata may also be viewed
functorially, placing them on common ground with CFGs.

4. sketch how to derive (a generalization of) the C-S theorem.

Plan for the talk

(for details and some discussion of related work, see the MFPS paper)
10

Context-free languages of arrows

11

The operad of spliced arrows

Let ℂ be a category. The operad W[ℂ] is defined as follows:

• its colors are pairs (A,B) of objects of ℂ;
• its n-ary operations (A₁,B₁),⋯,(Aₙ,Bₙ) → (A,B) consist of sequences
 w₀−w₁−⋯−wₙ of n+1 arrows in ℂ separated by n gaps notated −,
 where wᵢ : Bᵢ → Aᵢ₊₁ for 0 ≤ i ≤ n, taking B₀ = A and Aₙ₊₁ = B;
• composition of spliced arrows is performed by “splicing into the gaps”
 (see next slide)
• the identity operation on (A,B) is given by idA−idB.

(W[ℂ] generalizes W[Σ], taking ℂ = 𝔹Σ the free monoid seen as one-object category.)

*
a b𝔹Σ =

12

The operad of spliced arrows

BA

w

A B

A₁ B₁ A₂ B₂ A₃ B₃

w₀ w₃

w₁ w₂

w₀−w₁−w₂−w₃ : (A₁,B₁),(A₂,B₂),(A₃,B₃) → (A,B) w : (A,B)

operations

13

The operad of spliced arrows

A B

A B

A B

A₁ B₁ A₂ B₂ A₃ B₃

C₁ D₁ C₂ D₂

w₀ w₃

w₁ w₂

u₀
u₁

u₂

A₁ B₁ A₃ B₃C₁ D₁ C₂ D₂

w₁ w₂u₀ u₁ u₂=

A

w₀

B

w₃

identity

partial
composition

14

Cat
W[-]

The splicing functor

The operad of spliced arrows construction defines a functor

Operad

since any functor of categories F : ℂ → 𝔻 induces a functor of operads
W[F] : W[ℂ] → W[𝔻].

15

Free operads

A species is a set of "nodes" with colored edges. Any species 𝕊 generates a
free operad (Free 𝕊) whose operations are trees, with nodes labeled by nodes
of 𝕊 while respecting the coloring constraints on edges.

Species Operad
Free

Forget

⊤

Species(Free 𝕊, 𝕆) ≅ Operad(𝕊, Forget 𝕆)

Conversely, any operad 𝕆 has an underlying species (Forget 𝕆) with nodes
given by operations of 𝕆, simply forgetting about composition and identity.

16

Definition

A context-free grammar of arrows is a tuple G = (ℂ, 𝕊, S, φ) consisting of a
category ℂ, a finite species 𝕊 equipped with a distinguished color S ∈ 𝕊 and a
functor of operads p : Free 𝕊 → W[ℂ].

The context-free language of arrows LG generated by the grammar G is the
subset of arrows in ℂ which, seen as constants of W[ℂ], are in the image of
constants of color S in Free 𝕊, that is, LG = { p(α) | α : S }.

Proposition: A language L ⊆ Σ* is context-free in the classical sense iff it is the
language of arrows of a context-free grammar over 𝔹Σ.

17

(Another look at the example)

Free 𝕊

W[𝔹Σ]

1 : S → NP VP
2 : NP → mom
3 : NP → tom
4 : VP → loves NP

NP

1

3

2

4

id-␣-id ∘ (tom, loves␣-id∘mom)
= tom␣loves␣mom

S

VPNP

NP NP VP

NP

1 2 3 4

id-␣-id mom tom loves␣-id

↦ ↦ ↦ ↦ ↦

S

VPNP

𝕊 Free 𝕊

18

Refining classical CFGs with "gap types"

A feature of the general definition is that non-terminals are sorted.

We write R ⊏ (A,B) to mean p(R) = (A,B) and say R refines the gap type (A,B).

If G has start symbol S ⊏ (A,B) then LG ⊆ ℂ(A,B).

19

Refining classical CFGs with "gap types"

For example, consider the category constructed from
𝔹Σ by freely adjoining an object and an arrow.

A CFG over 𝔹Σ
⊤ may include production rules that can only be applied upon

end of input, like Knuth's "0th production" rule S' → S$ from the LR parsing paper.
(Here S ⊏ (∗,∗) is "classical" while S' ⊏ (∗,⊤) is "end-of-input-aware".)

More significant examples coming up, including CFGs over runs of automata!

*
a

b

𝔹Σ
⊤ = ⊤

$

20

Reformulating standard properties of CFGs

Let G = (ℂ, 𝕊, S, p) be a CFG of arrows.

• G is linear iff 𝕊 only has nodes of arity ≤ 1. It is le-linear iff it is linear
 and every unary node x of 𝕊 is mapped by p to an operation of the form id−w.

• G is bilinear (a generalization of Chomsky NF) iff 𝕊 only has nodes of arity ≤ 2.

• G is unambiguous iff for any constants α, β : S in Free 𝕊, if p(α) = p(β) then α = β.

• A non-terminal R is nullable if there exists a constant α : R of Free 𝕊 s.t. p(α) = id.

• A non-terminal R is useful if there exists a constant α : R and a unary op β : R → S.
 Note that if G has no useless non-terminals then G is unambiguous iff p is faithful.

21

Basic closure properties of CF languages

[Union] If L₁, L₂ ⊆ ℂ(A,B) are CF, so is L₁ ∪ L₂ ⊆ ℂ(A,B).

[Spliced concatenation] If L₁ ⊆ ℂ(A₁,B₁),...,Lₙ ⊆ ℂ(Aₙ,Bₙ) are CF, and
w₀−w₁−⋯−wₙ : (A₁,B₁),...,(Aₙ,Bₙ) → (A,B) is an operation of W[ℂ], then
w₀L₁w₁⋯Lₙwₙ ⊆ ℂ(A, B) is also CF.

[Functorial image] If L ⊆ ℂ(A, B) is CF, and F : ℂ → 𝔻 is a functor of
categories, then F(L) ⊆ 𝔻(F(A), F(B)) is also CF.

(Proofs le as an exercise!)

22

The translation principle

Let G₁ = (ℂ, 𝕊₁, S₁, p₁) and G₂ = (ℂ, 𝕊₂, S₂, p₂) be two CFGs over
the same category ℂ.

If there is a fully faithful functor of operads T : Free 𝕊₁ → Free 𝕊₂
such that p₁ = T p₂ and T(S₁) = S₂, then LG₁ = LG₂, moreover
with the grammars generating isomorphic sets of parse trees.

Example use of translation principle: for any CFG of arrows, there
is a bilinear CFG of arrows generating the same language.

(cf. Leermakers 1989)

23

A quick digression on
generalized CFGs and gCFLs
(from the long version of the paper, not yet online)

24

Definition

A generalized CFG (over an operad) is a tuple G = (𝕆, 𝕊, S, φ) consisting of an
operad 𝕆, a finite species 𝕊 equipped with a distinguished color S ∈ 𝕊 and a
functor of operads p : Free 𝕊 → 𝕆. The language of constants LG generated by
the grammar G is given by the subset of constants LG = { p(α) | α : S }.

CFGs of arrows are the special case where 𝕆 = W[ℂ] is a spliced arrow operad.

25

A few examples

Multiple CFGs (Seki et al.) obtained taking 𝕆 = Laff W[ℂ], where Laff ℙ is the free
semi-cartesian (="affine") strict monoidal operad over ℙ. Note the colors of Laff ℙ
are given by lists [A1,...,Ak] of colors in ℙ, and operations [Γ1],...,[Γn] → [A1,...Ak] by
pairs ([f1,...,fk],𝜎) of a list of operations f1 : Ω1 → A1,...,fk : Ωk → Ak in ℙ and an
injection σ : Ω1,...,Ωk ↪ Γ1,...,Γn.

Parallel multiple CFGs (Seki et al.) obtained taking 𝕆 = LcartW[ℂ].

Can also recover more "semantic" examples, e.g., series-parallel graphs are
generated by a gCFG over 𝕆 = Set (cf. Courcelle & Engelfriet 2012, §1.1.3).

(e.g., there is a 3-mCFG generating the language an#bn#'cn)

26

Abstracting the notion of language

There is an old idea, that a context-free language may be considered as a
minimal solution to a system of (polynomial) equations.

Ginsburg & Rice 1962, Mezei & Wright 1967, Conway 1971

We categorify this idea by first introducing a notion of model of a functor
p : Free 𝕊 → 𝕆 in an arbitrary target functor q : 𝔼 → 𝔹, given by a square

Free 𝕊

𝕆

𝔼

𝔹

p q

⟦-⟧'

⟦-⟧

satisfying an extra condition ("cones in 𝕊 sent to q-minimal cones in 𝔼").

27

Abstracting the notion of language

We can then define the q-language generated by a gCFG (𝕆,𝕊,S,p) as the
interpretation ⟦S⟧' ⊏q ⟦A⟧ of its start symbol S ⊏p A for some initial model
(⟦-⟧',⟦-⟧) : p → q, when such a model exists and is hence unique up to canonical iso.

The traditional language is recovered as the q-language for q = sub : Subset → Set.
But every gCFG also has an initial model in tgt : Set→ → Set, which we can see as a
proof-relevant language encoding not just a subset of words but also their parses.

q-languages satisfy good closure properties if q has sufficient structure.

28

Finite-state automata
over categories and operads

29

[recognizing the language (a+b)*(abb+ba)]

Reminder on finite state automata

a

b
a

a

a
b

b

0

1 2

3

4

alphabet Σ = {a,b} state set Q = {0,1,2,3,4}

accepting stateinitial state

transitions along letters
An NDFA:

(no ε-transitions)

30

Representing automata as functors

∗
a b𝔹Σ

0

1 2

3

4

p

ℚ

31

Two key properties of NDFAs

Let p : 𝔻 → 𝕋 be a functor of categories.

p is finitary if p⁻¹(A) and p⁻¹(w) are finite for every object A and arrow w of 𝕋.

p is ULF if for any arrow α of 𝔻, if p(α) = uv for some arrows u and v of 𝕋, there
exist unique arrows β and γ of 𝔻 such that α = βγ and p(β) = u and p(γ) = v.

Proposition: a functor p : ℚ → 𝔹Σ is the underlying bare automaton of a NDFA
with alphabet Σ iff p is both finitary and ULF.

(Note: ULF = "unique liing of factorizations" is a generalization of the property of
being a discrete (op)fibration. A finitary discrete opfibration p : ℚ → 𝔹Σ corresponds to
the underlying bare automaton of a deterministic finite automaton.)

32

Definition

A NDFA over a category is a tuple M = (ℂ, ℚ, p : ℚ → ℂ, q0, qf) consisting of
two categories ℂ and ℚ, a finitary ULF functor p : ℚ → ℂ, and a pair q0, qf of
objects of ℚ.

The regular language of arrows LM recognized by the automaton M is the
subset of arrows in ℂ that can be lied along p to an arrow α : q0 → qf in ℚ,
that is, LM = { p(α) | α : q0 → qf }.

Proposition: A language L ⊆ Σ* is regular in the classical sense iff L$ is the
regular language of arrows of a NDFA over 𝔹Σ

⊤.

33

Automata over operads

The definitions of finitary / ULF extend smoothly to functors of operads.

We define an NDFA over an operad as a tuple M = (𝕆, ℚ, p : ℚ → 𝕆, q)
where p : ℚ → 𝕆 is a finitary ULF functor of operads, and q a color of ℚ.

When 𝕆 = Free Σ is the free operad over a ranked alphabet Σ, this recovers
standard ND finite state tree automata. But the above notion is more general!

Proposition: if a functor of categories p : ℚ → ℂ is finitary / ULF, so is the
functor of operads W[p] : W[ℚ] → W[ℂ].

∴ any NDFA over a category induces an NDFA over its spliced arrow operad,
by the mapping (p : ℚ → ℂ, q0, qf) ↦ (W[p] : W[ℚ] → W[ℂ], (q0,qf))

34

The Representation Theorem

35

Overview

Chomsky & Schützenberger (1963): Any CF language is the homomorphic image
of the intersection of a Dyck language with a regular language.

Our version: Any CF language of arrows in ℂ is the functorial image of the
intersection of a ℂ-chromatic tree contour language and a regular language.

The proof relies on two constructions that are of more general interest:

1. The pullback of a CFG of arrows along an NDFA, which we use to show that
 CFLs are closed under intersection with regular languages.

2. The contour category of an operad, providing a le adjoint to the splicing
 functor, which we use to define a "universal CFG" for any pointed finite species.

36

Pulling back a CFG along a NDFA

General properties of ULF functors imply that the pullback on the
le (in Species) is mapped to a pullback on the right (in Operad):

𝕊

W[ℂ]W[ℚ]

𝕊'
φG

W[pM]

ψ

φ' pullback
Free 𝕊Free 𝕊'

pG

Free ψ

p' pullback

W[ℂ]W[ℚ] W[pM]

This allows us to define the pullback of a CFG G along a NDFA M by
G' = (ℚ, 𝕊', (S,(q0,qf)), p'). Note G' generates a language of runs of M!

Taking the image of G' along pM yields a grammar generating LG ∩ LM.
37

The contour category of an operad

Let 𝕆 be an operad. The category C[𝕆] is a quotient of the free category with:

• objects given by oriented colors Rε consisting of a color R of 𝕆 and an
 orientation ε ∈ { u,d } ("up" or "down");
• arrows generated by pairs (f,i) of an operation f : R₁,...,Rₙ → R of 𝕆 and an
 index 0 ≤ i ≤ n, defining an arrow Ri

d → Ri+1
u where R0

d = Ru and Rn+1
u = Rd;

subject to some reasonable equations with a geometric interpretation...

38

The contour category of an operad

R

(c,0)

Rd

Ru

c

R

R1

(f,3)

(f,0)

R3
d

Ru

2
3R
u

f

Rd

Ru

R1
d

R2
d

R1
u

(f,1) (f,2)

R2

R3

sector

39

The contour category of an operad

f

(f,2)

g

(f,1)

(g,0)

(f∘₁g,1)

(g,2)
(f∘₁g,3)

f

(f,2)

c

(f,1)

(c,0)

(f∘₁c,1)

(f∘₁g,2) = (g,1)

(f∘₁g,0) = (f,0)
(f∘₁g,4) = (f,3)

(f∘₁c,0) = (f,0)
(f∘₁c,2) = (f,3)

40

The contour / splicing adjunction

This construction provides a le adjoint to the splicing contruction:

CatOperad
C[-]

W[-]

⊤

The unit and counit have nice descriptions:

Operad(𝕆, W[ℂ]) ≅ Cat(C[𝕆], ℂ)

R ↦ (Rᵘ,Rᵈ)
f ↦ (f,0)─⋯─(f,n)

(A,B)ᵘ ↦ A (A,B)ᵈ ↦ B
(w₀−⋯−wₙ,i) ↦ wᵢ

η : 𝕆 → W[C[𝕆]] ε : C[W[ℂ]] → ℂ

41

The universal CFG of a pointed finite species

By the contour / splicing adjunction, any p : Free 𝕊 → W[ℂ] factors as

W[C[Free 𝕊]]Free 𝕊
η𝕊 W[ℂ]

W[q]

for a unique functor of categories q : C[Free 𝕊] → ℂ.

The CFG Univ𝕊,S = (C[Free 𝕊],𝕊,S,η𝕊) is therefore "universal", in the sense that any
other CFG G = (ℂ,𝕊,S,p) with the same species and start symbol is obtained
uniquely as the functorial image G = q Univ𝕊,S.

The language generated by Univ𝕊,S is a language of tree contour words.

42

A tree contour word over a species 𝕊

a0b0a1c0d0c1e0c2a2f0g0f1a3 : 1u → 1d

g

f

ed

c

b

a

a₀

a₁
a₂

a₃

c₁

c₂

f₁

b₀
c₀

d₀ e₀

g₀

f₀

1u

2u

2d
3u

3d

4u

4d

5u

5d

6u
6d

7u

7d

1d

a : 2,3,4 → 1 d : 5
b : 2 e : 6
c : 5,6 → 3 f : 7 → 4
g : 7

𝕊

43

Idea of the representation theorem

Separate the generation of a CF language into three pieces:

1. generate "uncolored" contour words describing shapes of 𝕊-trees;

2. use an automaton to check that the contour words denote
 well-colored 𝕊-trees with root color S;

3. interpret each corner of the contour as an appropriate arrow.

44

Free 𝕊 Free φC 𝕊

W[C[Free φC 𝕊]]

Free φcolors

η𝕊

W[C[Free 𝕊]]

W[ℂ]

W[C[Free φcolors]]

ηφC 𝕊

W[q] W[qnodes]

(∗)

The proof in a diagram

LG = q L𝕊,S = qnodes C[φcolors] L𝕊,S = qnodes (LφC𝕊,S ∩ LMcolors)

*The naturality square is not a pullback, but the canonical functor Free 𝕊 → Free ℝ to the pullback is fully faithful,
hence we can apply the translation principle!

45

Conclusion

46

Summary!

Free 𝕊

W[𝔹Σ]

NP

1

3

2

4

id-␣-id ∘ (tom, loves␣-id∘mom)
= tom␣loves␣mom

S

VPNP

NP NP VP

NP

1 2 3 4

id-␣-id mom tom loves␣-id

↦ ↦ ↦ ↦ ↦

S

VPNP

𝕊 Free 𝕊

∗
a b𝔹Σ

0

1 2

3

4

p

ℚ

A B

A₁ B₁ A₂ B₂ A₃ B₃

C₁ D₁ C₂ D₂

w₀ w₃

w₁ w₂

u₀
u₁

u₂

A₁ B₁ A₃ B₃C₁ D₁ C₂ D₂

w₁ w₂u₀ u₁ u₂=

A

w₀

B

w₃

g

f

ed

c

b

a

a₀

a₁
a₂

a₃

c₁

c₂

f₁

b₀
c₀

d₀ e₀

g₀

f₀

1u

2u

2d
3u

3d

4u

4d

5u

5d

6u
6d

7u

7d

1d

Free 𝕊 Free φC 𝕊

W[C[Free φC 𝕊]]

Free φcolors

η𝕊

W[C[Free 𝕊]]

W[ℂ]

W[C[Free φcolors]]

ηφC 𝕊

W[q] W[qnodes]

(∗)

Free 𝕊

𝕆

𝔼

𝔹

p q

⟦-⟧'

⟦-⟧

47

Current / future directions

The MFPS paper includes brief discussion of generalized CYK parsing.
One of our original goals (back in 2017!) was to understand LR parsing.
We are revisiting LR & Earley parsing in the fresh light of contour categories.
Hope to eventually gain better understanding of type inference and proof search.

Parsing (& typing & proving)

This seems to be a contribution of language theory to category theory!
More to the story: W[ℂ] naturally extends to a cyclic polycategory (jww Peter Faul).
Apparent link with permutation reps of graphs on surfaces (combinatorial maps).
The adjunction has been recently extended and applied to process algebra.

The contour / splicing adjunction

Matt Earnshaw, James Hefford, Mario Román
The Produoidal Algebra of Process Decomposition, arXiv:2301.11867

48

Extra slides

49

From contour words to Dyck words

g

f

ed

c

b

a

1u0

2u0

2d0 3u0

3u1 3d0

4u0

4d0

4d1

5u0

5d0

6u0 6d0

7u0

7d0

1d0
1u1

1d1

2u1 2d1

5u1

5d1

6u1

6d1

3d1

4u1

7u1

7d1

[a₀

[a₁

[b₀

b₀]

a₁] [a₂

[c₀

[c₁

[d₀

[e₀

[g₀

g₀]

c₀]

d₀]

c₁] [c₂

e₀]

c₂]

a₂]

[a₃ [f₀

[f₁

f₁]

f₀]

a₃]

a₀]

g

f

ed

c

b

a

a₀

a₁
a₂

a₃

c₁

c₂

f₁

b₀
c₀

d₀ e₀

g₀

f₀

1u

2u

2d
3u

3d

4u

4d

5u

5d

6u
6d

7u

7d

1d

50

Colors / nodes factorization

φC 𝕊

W[𝔹Σ]

1 2 3 4

id-␣-id mom tom loves␣-id

↦ ↦ ↦ ↦

S

VPNP

NP NP VP

NP

1 2 3 4

↦ ↦ ↦ ↦

𝕊

φcolors

φnodes

51

Translation of corners

10 ↦ id
11 ↦ ␣
12 ↦ id

20 ↦ mom

30 ↦ tom

40 ↦ loves␣
41 ↦ id

C[φC 𝕊] 𝔹Σ

52

1

3

2

4

1

3 2 1

32

4

...

10301140204112 1030112012 40102011301241

Uncolored tree contour words

tom␣loves␣mom tom␣mom loves␣mom␣tom

Free φC 𝕊

W[𝔹Σ]

53

Coloring automaton

1 2 3 4

Su

NPu NPd VPu

VPd

Sd NPu NPd NPu NPd VPu

NPu NPd

VPd

10

Su NPu NPd

20

30

VPu

1140

VPd

41 12

Sd

C[φC 𝕊]

C[𝕊]

54

Species (some terminology)

A (colored non-symmetric) species is a span of sets of the form

C* V C
with the following interpretation: C is a set of "colors", V a set of "nodes",
and i : V → C* and o : V → C return respectively the list of input colors and the
unique output color of each node. We say a species is finite (aka "polynomial")
iff both C and V are finite. A map of species is a pair of functions (φC,φV)
making the diagram commute:

i o

C* V C
i o

D* W D
i' o'

φV φCφC*

55

Free contour categories

The contour category of a free operad is itself a free category,
with C[Free 𝕊] generated by the corners* (x,i) consisting of an
n-ary node x and index 0 ≤ i ≤ n.

We sometimes write C[𝕊] as another name for this category.

CatOperad
C[-]

W[-]

⊤

GraphSpecies
⊤

⊤ ⊤

Although C[-] dœs not preserve ULF in general, we have that for any species map
ψ : 𝕊 → ℝ, the functor of categories C[ψ] : C[𝕊] → C[ℝ] is ULF.

*Note that the word "corner" comes from the theory of planar maps, but in parsing theory,
corners are called "dotted rules"!

56

