Skew-closed objects, typings of linear lambda terms, and flows on trivalent graphs

Noam Zeilberger
University of Birmingham
STRING 2017, Jericho Tavern
10 September 2017
[work in progress, in part based on joint work with Jason Reed]

Lambda calculus: linearity and related notions

a term is linear if every (free or bound) var is used exactly once

- linear: $\lambda x . \lambda y . x y$
- non-linear: $\lambda x \cdot \lambda y \cdot y, \lambda x \cdot \lambda y . x(x y)$
a term is planar if variables are used in the order they're bound
- planar: $\lambda x \cdot \lambda y \cdot \lambda z \cdot x(y z)$
- non-planar: $\lambda x \cdot \lambda y \cdot \lambda z .(x z) y$
a term is unit-free if it has no closed subterms
- unit-free: $x \vdash \lambda y . y x$
- not unit-free: $x \vdash x(\lambda y \cdot y)$

What are "maps"?

a graph + embedding into an oriented surface (e.g., the sphere)

What are "maps"?

a graph + embedding into an oriented surface (e.g., the sphere) or equivalently...
a permutation representation of $\Gamma=\left\langle v, e, f \mid e^{2}=v e f=1\right\rangle$

$$
\begin{aligned}
& v=(123)(456)(789)(10111213)(141516)(17181920) \\
& e=(118)(216)(34)(515)(67)(811)(910)(1214)(1317)(1920) \\
& f=(1171216)(2154)(369132018)(514117)(810)(19)
\end{aligned}
$$

What are "maps"?

close connections to knot theory via the medial map construction ${ }^{1}$

[^0]
What are "maps"?

Bill Tutte pioneered the enumerative study of maps.

- A census of planar triangulations. Can. J. Math. 14:21-38, 1962
- A census of Hamiltonian polygons. Can. J. Math. 14:402-417, 1962
- A census of planar maps. Can. J. Math. 15:249-271, 1963
- On the enumeration of planar maps. Bull. AMS 74:64-74, 1968
- On the enumeration of four-colored maps. SIAM J. Appl. Math. 17:454-460, 1969

One of Tutte's early insights was to consider rooted maps.

(a rooted trivalent map)

Some surprising enumerative connections

family of lambda terms	family of rooted maps	OEIS
linear terms ${ }^{1,4}$	trivalent maps	A062980
planar terms	planar trivalent maps	A002005
unit-free linear		
unit-free planar		
normal linear terms $/ \sim^{3}$	bridgeless trivalent	A267827
normal planar terms	maps	planar maps

1. Bodini, Gardy, Jacquot, "Asymptotics and...", TCS 502, 2013.
2. Z, Giorgetti, "A correspondence between...", LMCS 11(3:22), 2015.
3. Z, "Counting isomorphism classes...", arXiv:1509.07596, 2015.
4. Z, "Linear lambda terms as invariants...", JFP 26(e21), 2016.
5. Courtiel, Yeats, Z, "Connected chord...", arXiv:1611.04611, 2017.
6. Z, "A sequent calculus for a semi-associative law", FSCD 2017.

String diagrams for linear lambda terms

Linear lambda terms (with n free vars) may be modelled as (n-ary) endomorphisms of a reflexive object in a symmetric monoidal closed bicategory, i.e., an object U equipped with an adjunction $@ \dashv \lambda$ to its space of endomorphisms $U \multimap U$.

Interpreting this signature in the graphical language of compact closed bicategories $\left(U \multimap U \cong U \otimes U^{*}\right)$ recovers a familiar diagrammatic notation for lambda terms...

String diagrams for linear lambda terms

String diagrams for linear lambda terms

Linear lambda terms as invariants of rooted trivalent maps

Forgetting edge orientations/vertex states yields a rooted map.

Linear lambda terms as invariants of rooted trivalent maps

Forgetting edge orientations/vertex states yields a rooted map.
...but not every orientation gives a valid lambda term!

Linear lambda terms as invariants of rooted trivalent maps

Forgetting edge orientations/vertex states yields a rooted map.
...but not every orientation gives a valid lambda term!
In fact, every rooted trivalent map is the underlying map of a unique linear lambda term. (Effectively, the term can be seen as a complete topological invariant of its underlying trivalent map.)

Typing as edge-coloring

So what about types?
Seen through the lens of graph theory, typing is naturally posed as an edge-coloring problem: assign each edge (= subterm) a color (= type) so as to satisfy certain constraints at the vertices (= applications and abstractions).

To make this analogy precise, let's first meet a friendly algebraic gadget...

Introducing imploids

An imploid is a preorder (P, \leq) equipped with an operation

$$
\begin{equation*}
\frac{A_{2} \leq A_{1} \quad B_{1} \leq B_{2}}{A_{1} \multimap B_{1} \leq A_{2} \multimap B_{2}} \tag{1}
\end{equation*}
$$

and an element $I \in P$, satisfying laws of composition, identity, unit:

$$
\begin{align*}
B \multimap C \leq & (A \multimap B) \multimap(A \multimap C) \tag{2}\\
& I \leq A \multimap A \tag{3}\\
& I \multimap A \leq A \tag{4}
\end{align*}
$$

In a non-unital imploid we only ask for (1) and (2). An imploid is said to be commutative if it moreover satisfies DN/:

$$
\begin{equation*}
A \leq(A \multimap B) \multimap B \tag{5}
\end{equation*}
$$

Introducing imploids

Any group provides an example of an imploid, by taking the discrete preorder and $A \multimap B \stackrel{\text { def }}{=} B \bullet A^{-1}$.

So does any (skew) monoid, by taking its downwards closed subsets ordered by inclusion and $A \multimap B \stackrel{\text { def }}{=}\{x \mid \forall y . y \in A \Rightarrow x \bullet y \in B\}$.

Conversely, an imploid is just a skew-closed preorder:

- Ross Street. Skew-closed categories. J. Pure and Appl. Alg., 217(6):973-988, 2013.

Imploid-typing

Let M be a linear lambda term, and $P=(P, \leq, \multimap, I)$ a commutative imploid. A P-typing of M is an assignment Subterms $(M) \rightarrow P$ satisfying the constraints

at every application and abstraction.
If M is planar we can drop assumption that P is commutative.
If M is unit-free we can drop assumption that P is unital.

Imploid-typings and G-flows

For $P=G$ a (commutative) group, a P-typing of M is the same thing as a G-flow ${ }^{2}$ on its underlying trivalent graph $|M|$.

For example, a \mathbb{Z}_{2}-typing is the same thing as an element of the cycle space of $|M| \ldots$

[^1]
Imploid-typings and G-flows

Imploid-typings and G-flows

$\mathrm{A} \mathbb{Z}_{2}$-typing with $\alpha=1, \beta=1, \gamma=1$

Imploid-typings and G-flows

A \mathbb{Z}_{2}-typing with $\alpha=1, \beta=0, \gamma=1$

Imploid-typings and G-flows

A \mathbb{Z}_{2}-typing with $\alpha=0, \beta=1, \gamma=0$

Imploid-typings and G-flows

The typing problem for linear lambda terms is usually considered "trivial", but the study of flows on graphs (and trivalent graphs in particular) is a deep and richly developed subject.

Let us say that a P-typing is proper if no subterm is assigned a type above the unit type I.

Theorem

Every unit-free planar lambda term has a proper $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-typing.

Proof.

This is equivalent to the Four Color Theorem.

Diagrams for skew-closed objects

We can view the typing constraints

as defining (2-enriched) distributors © : $P \nrightarrow P \otimes P^{*}$ and $\lambda: P \otimes P^{*} \nrightarrow P$. Indeed, these are exactly the adjoint pair of distributors $\lambda \dashv @$ associated to the functor $-: P^{\mathrm{op}} \times P \rightarrow P$.

The definition of an imploid can be recast in diagrammatic terms ($@=0, \lambda=0$)...

Diagrams for skew-closed objects (non-unital fragment)

Diagrams for skew-closed objects (unital fragment)

$$
\psi C \leq B \quad \nLeftarrow \bar{\delta}
$$

Some derived rules

Some derived rules

A combinatory correctness criterion

Theorem (Reed, Z)

A string diagram (with one incoming and one outgoing edge) represents a unit-free planar term $x \vdash-M$ just in case it can be reduced to the trivial diagram $x \vdash x$ using only $\bar{\eta}, \bar{\beta}$, and $\bar{\tau}$ moves.

Proof.

(\Leftarrow) is easy. (\Rightarrow) is by constructing a term $x \vdash T$ using only compositions of the " B " combinator $x \vdash \lambda y . \lambda z \cdot x(y z)$ such that $T \rightarrow{ }_{\beta}^{*} M$.

The End?...

Questions:

- Coherence axioms on 2-cells?
- Any useful applications of combinatory completeness?
- Extension to D. Thurston's completeness theorem for the algebra of knotted trivalent graphs?
- How should we view the space of P-typings of a lambda term?
- Any meaning to flow/cut duality?

[^0]: ${ }^{1}$ cf. Louis Kauffman's "A Tutte polynomial for signed graphs", Discrete Appl. Math. 25 (1989), 105-127

[^1]: ${ }^{2}$ W. T. Tutte, A contribution to the theory of chromatic polynomials. Can. J. Math. 6:80-91, 1954.

